Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of state parameter distributions and extreme ultraviolet radiation in laser-produced tin plasma

MIN Qi WANG Guodong HE Chaowei HE Siqi LU Haidong LIU Xingbang WU Yanhong SU Maogen DONG Chenzhong

Citation:

Numerical simulation of state parameter distributions and extreme ultraviolet radiation in laser-produced tin plasma

MIN Qi, WANG Guodong, HE Chaowei, HE Siqi, LU Haidong, LIU Xingbang, WU Yanhong, SU Maogen, DONG Chenzhong
cstr: 32037.14.aps.74.20241321
PDF
HTML
Get Citation
  • The laser-produced Sn plasma light source is a critical component in advanced extreme ultraviolet (EUV) lithography. The power and stability of EUV radiation within a 2% bandwidth centered at 13.5 nm are key indicators that determine success of the entire lithography process .The plasma state parameter distributions and the EUV radiation spectrum for a laser-produced Sn plasma light source are numerically simulated in this work. The radiative opacity of Sn plasma within the 12–16 nm range is calculated using a detailed-level-accounting model in the local thermodynamic equilibrium approximation. Next, the temperature distribution and the electron density distribution of plasma generated by nanosecond laser pulses interacting with both a Sn planar solid target and a liquid droplet target are simulated using the radiation hydrodynamics code for laser-produced plasma, RHDLPP. By combining the radiative opacity data with the plasma state data, the spectral simulation subroutine SpeIma3D is employed to model the spatially resolved EUV spectra for the planar target plasma and the angle-resolved EUV spectra for the droplet target plasma at a 60-degree observation angle. The variation of in-band radiation intensity at 13.5 nm within the 2% bandwidth as a function of observation angle is also analyzed for the droplet-target plasma. The simulated plasma state parameter distributions and EUV spectral results closely match existing experimental data, demonstrating the ability of RHDLPP code to model laser-produced Sn plasma EUV light sources. These findings provide valuable support for the development of EUV lithography and EUV light sources.
      Corresponding author: MIN Qi, mq_lpps@nwnu.edu.cn ; SU Maogen, sumg@nwnu.edu.cn ; DONG Chenzhong, dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474279, 12064040, 12464036, 12374384) and the Central Leading Local Science and Technology Development Fund Projects, China (Grant No. 23ZYQA293).
    [1]

    Bakshi V 2023 Photon Sources for Lithography and Metrology (Washington: SPIE Press

    [2]

    Bakshi V 2018 EUV Lithography (2nd Ed.) (Washington: SPIE Press

    [3]

    林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002Google Scholar

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng X Y 2022 Laser Optoelectron. Prog. 59 0922002Google Scholar

    [4]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [5]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2022 J. Opt. 24 054014Google Scholar

    [6]

    Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar

    [7]

    Schupp R, Behnke L, Sheil J, Bouza Z, Bayraktar M, Ubachs W, Hoekstra R, Versolato O O 2021 Phys. Rev. Res. 3 013294Google Scholar

    [8]

    Schupp R, Behnke L, Bouza Z, Mazzotta Z, Mostafa Y, Lassise A, Poirier L, Sheil J, Bayraktar M, Ubachs W 2021 J. Phys. D: Appl. Phys. 54 365103Google Scholar

    [9]

    Hemminga D J, Versolato O O, Sheil J 2023 Phys. Plasmas 30 033301Google Scholar

    [10]

    Hernandez-Rueda J, Liu B, Hemminga D J, Mostafa Y, Meijer R A, Kurilovich D, Basko M, Gelderblom H, Sheil J, Versolato O O 2022 Phys. Rev. Res. 4 013142Google Scholar

    [11]

    Meijer R A, Kurilovich D, Eikema K S E, Versolato O O, Witte S 2022 J. Appl. Phys. 131 105905Google Scholar

    [12]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Comm. 11 2334Google Scholar

    [13]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002Google Scholar

    [14]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [15]

    Colgan J, Kilcrease D P, Abdallah Jr J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133Google Scholar

    [16]

    Sasaki A 2024 Appl. Phys. Lett. 124 064104Google Scholar

    [17]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [18]

    Pan Y, Tomita K, Sunahara A, Sasaki A, Nishihara K 2023 Appl. Phys. Lett. 123 204103Google Scholar

    [19]

    Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017 Sci. Rep. 7 45212Google Scholar

    [20]

    Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Control. Fusion 54 055003Google Scholar

    [21]

    Nishihara K, Sunahara A, Sasaki A, Nunami M, Tanuma H, Fujioka S, Shimada Y, Fujima K, Furukawa H, Kato T, Koike F, More R, Murakami M, Nishikawa T, Zhakhovskii V, Gamata K, Takata A, Ueda H, Nishikawa T, Lzawa Y, Miyanaga N, Mima K 2008 Phys. Plasmas 15 056708Google Scholar

    [22]

    Sizyuk T, Hassanein A 2015 Phys. Plasmas 22 093101Google Scholar

    [23]

    Koshelev K N, Ivanov V V, Novikov V G, Medvedev V, Grushin A S, KrivtsunV M 2012 J. Micro. Nanolith. Mems. 11 021112Google Scholar

    [24]

    Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Comput. Phys. Commun. 302 109242Google Scholar

    [25]

    Castor J J 2004 Radiation Hydrodynamics (Cambridge: Cambridge University Press

    [26]

    Levermore C D, Pomraning G C 1981 Astrophysical Journal 248 321Google Scholar

    [27]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Nikiforov A F, Novikov V G, Uvarov V B 2005 Quantum-Statistical Models of Hot Dense Matter and Methods for Computation Opacity and Equation of State (Basel: Birkhauser Verlag

    [29]

    Heltemes T A, Moses G A 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [30]

    Faik S, Tauschwitz A, Iosilevskiy I 2018 Comput. Phys. Commun. 227 117Google Scholar

    [31]

    Young D A, Corey E M 1995 J. Appl. Phys. 78 3748Google Scholar

    [32]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energ. Dens. Phys. 1 3Google Scholar

    [33]

    Min Q, Shen R Z, Su M G, Lu H D, He S Q, Liu X B, Li Y, Tao Q Q, Wu Y H, Sun D X, Cao S Q, Dong C Z 2022 J. Phys. D: Appl. Phys. 55 505205Google Scholar

    [34]

    Magee N H, Abdallah Jr. J, Clark R E H, Cohen J S, Collins L A, Csanak G, Fontes C J, Gauger A, Keady J J, Kilcrease D P, Merts A L 1995 Astronomical Society of the Pacific Conference Series (Astrophysical Applications of Powerful New Databases, S. J. Adelman and W. L. Wiese eds.) 78 51

    [35]

    He S Q, Min Q, Wu Y H, Liu X B, He C W, Cao S Q, Pan Q K, Guo J, Chen F, Zhang D H, Su M G, Dong C Z 2024 Opt. Express 32 17088Google Scholar

    [36]

    Rodríguez R, Florido R, Gil J M, Rubiano JG, Martel P, Mínguez E 2008 Laser Part. Beams 26 433Google Scholar

    [37]

    Yan G P, Gao C, Hou Y, Jin F T, Li Y J, Zeng J L, Yuan J M 2024 Phys. Plasmas 31 093303Google Scholar

    [38]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [39]

    Busquet M 1993 Phys. Fluids B 5 4191Google Scholar

    [40]

    Busquet M, Colombant D, Klapisch M, Fyfe D, Gardner J 2009 High Energ. Dens. Phys. 5 270Google Scholar

    [41]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (California: University of California Press

    [42]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Scheers J, Kurilovich D, Bayerle A, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato1 O O 2019 Phys. Rev. Appl. 12 014010Google Scholar

  • 图 1  激光等离子体辐射流体力学程序RHDLPP的程序框架图

    Figure 1.  Framework for the radiation hydrodynamics code RHDLPP.

    图 2  SpeIma3D程序模拟激光等离子体光谱的示意图[35]

    Figure 2.  Schematic diagram of the spectrum of a laser-produced plasma simulated by the SpeIma3D program[35].

    图 3  不同$ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $下离子电荷态分布的对比结果, 其中红色柱状图代表 LTE条件下基于细致能级的结果(LTE-DLA), 蓝色柱状图代表LTE条件下基于屏蔽氢近似的结果(LTE-SH), 灰色柱状图代表non-LTE条件下基于屏蔽氢近似的结果

    Figure 3.  Comparison of ion charge state distributions under different $ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $ conditions. The red bar chart represents results based on DLA model under LTE conditions (LTE-DLA), the blue bar chart represents results based on the screened hydrogenic approximation under LTE conditions (LTE-SH), and the gray bar chart represents results based on the screened hydrogenic approximation under non-LTE conditions.

    图 4  密度为0.002 g/cm3, 温度为(a) 32 eV和(b) 20 eV 时Sn等离子体的EUV 辐射不透明度

    Figure 4.  EUV radiative opacity of Sn plasmas at a density of 0.002 g/cm3 and temperatures of (a) 32 eV, (b) 20 eV.

    图 5  延迟时间10.5 ns时, 模拟和实验测量的激光Sn等离子体(a)温度和(b)电子密度在距离靶面130, 200, 300 μm 处沿着r轴的分布

    Figure 5.  Simulated and experimentally measured distributions of laser-produced Sn plasma (a) temperature and (b) electron density along the r-axis are presented at distances of 130, 200, and 300 μm from the target surface, with a delay time of 10.5 ns.

    图 6  不同延迟时间下模拟的Sn等离子体温度(a)和质量密度(b)在r = 0处沿着z轴的分布

    Figure 6.  Simulated distribution of Sn plasma temperature (a) and mass density (b) along the z-axis at r = 0 for various delay times.

    图 7  距离靶面130, 200, 300 μm 处激光Sn等离子体的EUV光谱[18]

    Figure 7.  The EUV spectra of laser-produced Sn plasma at 130, 200, and 300 μm from the target surface[18].

    图 8  (a) 距离靶面130, 200, 300 μm 处激光Sn等离子体归一化的EUV实验光谱[18]以及(b) Sn7+—Sn14+离子的归一化发射率

    Figure 8.  (a) Normalized EUV experimental spectra of laser-produced Sn plasma at distances of 130, 200, and 300 μm from the target surface[18], and (b) normalized emissivity of Sn7+− Sn14+ ions.

    图 9  延迟时间为4, 7, 10, 13 ns时, 模拟得到的Sn液滴等离子体的温度(第一行)和密度(第二行)的二维分布, 图中激光自左向右沿着z轴入射

    Figure 9.  Two-dimensional distributions of temperature (first row) and density (second row) of Sn droplet plasma, obtained from simulations, when the delay times is 4, 7, 10, and 13 ns. In the panel, the laser propagates along the z-axis from left to right.

    图 10  观测视线与激光入射方向成60º角时, 实验测量的[12] (黑色实线)、Torretti等[12]模拟的(红色实线)以及本文利用RHDLPP程序模拟的(蓝色实线) Sn液滴等离子体的EUV光谱

    Figure 10.  The EUV spectra for the Sn droplet plasma, including the experimentally measured data[12] (black solid line), the simulation by Torretti et al. [12] (red solid line), and the simulation performed in this paper using the RHDLPP program (blue solid line). The spectra are observed at a 60º angle relative to the direction of laser incidence.

    图 11  Sn液滴等离子体在13.5 nm, 2%带宽内的归一化辐射强度随观测角的变化, 其中红色实心圆表示本文的模拟结果, 蓝色虚线表示拟合曲线

    Figure 11.  Variation of the normalized radiation intensity of the Sn droplet plasma at 13.5 nm with a 2% bandwidth as a function of the observation angle. The red solid circles represent the simulation results from this paper, while the blue dashed lines correspond to the fitted curves.

    表 1  14组$ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $下的比值R、电离温度$ {T}_{Z} $、LTE条件下基于细致能级的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-1} $、LTE条件下基于屏蔽氢近似的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-2} $及non-LTE条件下基于屏蔽氢近似的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}{\text{-}}{\mathrm{LTE}}} $

    Table 1.  Ratios R, ionization temperatures $ {T}_{Z} $, average charge states $ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-1} $ based on DLA model under LTE conditions, $ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-2} $ based on the screened hydrogenic approximation under LTE conditions, and $ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}{\text{-}}{\mathrm{LTE}}} $ based on the screened hydrogenic approximation under non-LTE conditions for 14 sets of $ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $ values.

    序号 $ {T}_{{\mathrm{e}}}/{\rm eV}$ $ {n}_{{\mathrm{e}}}/{\rm cm}^{-3} $ $ R $ $ {T}_{Z}/\rm eV $ $ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-1} $ $ {\left\langle{Z}\right\rangle}_{{\mathrm{LTE}}\text-2} $ $ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}\text-{\mathrm{LTE}}} $
    1 38 5.10×1020 1.00754 37.72 12.57 12.60 12.60
    2 2.05×1020 1.01839 37.31 13.20 13.35 13.34
    3 5.97×1019 1.05867 35.89 13.91 14.09 14.08
    4 32 5.07×1020 1.00418 31.87 11.10 11.14 11.13
    5 1.26×1020 1.01645 31.48 12.39 12.58 12.57
    6 5.34×1019 1.03737 30.85 13.17 13.25 13.23
    7 28 3.18×1020 1.00418 27.88 10.44 10.41 10.41
    8 1.15×1020 1.0114 27.68 11.32 11.46 11.46
    9 4.31×1019 1.02944 27.20 12.14 12.39 12.37
    10 23 1.00×1020 1.00664 22.85 9.87 9.82 9.81
    11 5.26×1019 1.0125 22.72 10.37 10.39 10.38
    12 2.23×1019 1.02862 22.36 11.00 11.11 11.10
    13 20 4.77×1019 1.00851 19.83 9.40 9.30 9.29
    14 1.06×1019 1.0364 19.30 10.42 10.44 10.43
    DownLoad: CSV

    表 2  COWAN计算采用的Sn11+—Sn14+离子的组态列表

    Table 2.  Configuration list of Sn11+ to Sn14+ ions.

    离子 组态
    Sn11+ 4s24p6 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p, 4d5s2,
    4d5p2, 4d5d2, 4d5p5d};
    4s24p5 + {4d34f, 4d35p, 4d35f, 4d24f5s, 4d24f5d,
    4d25s5p};
    4s24p4 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p};
    4s24p3 + {4d54f, 4d55p, 4d44f5s, 4d44f5d};
    4s4p6 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p};
    4s4p5 + {4d44f, 4d45p, 4d34f5s, 4d34f5d}.
    4s24p6 + {4d24f, 4d25p, 4d25f, 4d4f5s, 4d4f5d,
    4d5s5p};
    4s24p5 + {4d4, 4d35s, 4d35d, 4d24f2, 4d25s2, 4d24f5p,
    4d25s5d};
    4s24p4 + {4d44f, 4d45p, 4d34f5s, 4d34f5d};
    4s24p3 + {4d6, 4d55s, 4d55d, 4d44f2, 4d44f5p};
    4s4p6 + {4d34f, 4d35p, 4d24f5s, 4d24f5d};
    4s4p5 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p}.
    Sn12+ 4s24p6 + {4d2, 4d5s, 4d5d, 4f2, 4f5p, 5s2, 5p2,
    5d2, 5p5d};
    4s24p5 + {4d24f, 4d25p, 4d25f, 4d4f5s, 4d4f5d, 4d5s5p};
    4s24p4 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p};
    4s24p3 + {4d44f, 4d45p, 4d34f5s, 4d34f5d};
    4s4p6 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p};
    4s4p5 + {4d34f, 4d35p, 4d24f5s, 4d24f5d}.
    4s24p6 + {4d4f, 4d5p, 4d5f, 4f5s, 4f5d, 5s5p};
    4s24p5 + {4d3, 4d25s, 4d25d, 4d4f2, 4d5s2, 4d4f5p, 4d5s5d};
    4s24p4 + {4d34f, 4d35p, 4d24f5s, 4d24f5d};
    4s24p3 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p};
    4s4p6 + {4d24f, 4d25p, 4d4f5s, 4d4f5d};
    4s4p5 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p}.
    Sn13+ 4s24p6 + {4d, 5s, 5d};
    4s24p5 + {4d4f, 4d5p, 4d5f, 4f5s, 4f5d, 5s5p};
    4s24p4 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p};
    4s24p3 + {4d34f, 4d35p, 4d24f5s, 4d24f5d};
    4s4p6 + {4d2, 4d5s, 4d5d, 4f2, 4f5p};
    4s4p5 + {4d24f, 4d25p, 4d4f5s, 4d4f5d}.
    4s24p6 + {4f, 5p, 5f};
    4s24p5 + {4d2, 4d5s, 4d5d, 4f2, 5s2, 4f5p, 5s5d};
    4s24p4 + {4d24f, 4d25p, 4d4f5s, 4d4f5d};
    4s24p3 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p};
    4s4p6 + {4d4f, 4d5p, 4f5s, 4f5d};
    4s4p5 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p}.
    Sn14+ 4s24p6;
    4s24p5 + {4f, 5p, 5f};
    4s24p4 + {4d2, 4d5s, 4d5d, 4f2, 4f5p};
    4s24p3 + {4d24f, 4d25p, 4d4f5s, 4d4f5d};
    4s4p6 + {4d, 5s, 5d};
    4s4p5 + {4d4f, 4d5p, 4f5s, 4f5d}.
    4s24p5 + {4d, 5s, 5d};
    4s24p4 + {4d4f, 4d5p, 4f5s, 4f5d};
    4s24p3 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p};
    4s4p6 + {4f, 5p};
    4s4p5 + {4d2, 4d5s, 4d5d, 4f2, 4f5p}.
    DownLoad: CSV
  • [1]

    Bakshi V 2023 Photon Sources for Lithography and Metrology (Washington: SPIE Press

    [2]

    Bakshi V 2018 EUV Lithography (2nd Ed.) (Washington: SPIE Press

    [3]

    林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002Google Scholar

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng X Y 2022 Laser Optoelectron. Prog. 59 0922002Google Scholar

    [4]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [5]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2022 J. Opt. 24 054014Google Scholar

    [6]

    Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar

    [7]

    Schupp R, Behnke L, Sheil J, Bouza Z, Bayraktar M, Ubachs W, Hoekstra R, Versolato O O 2021 Phys. Rev. Res. 3 013294Google Scholar

    [8]

    Schupp R, Behnke L, Bouza Z, Mazzotta Z, Mostafa Y, Lassise A, Poirier L, Sheil J, Bayraktar M, Ubachs W 2021 J. Phys. D: Appl. Phys. 54 365103Google Scholar

    [9]

    Hemminga D J, Versolato O O, Sheil J 2023 Phys. Plasmas 30 033301Google Scholar

    [10]

    Hernandez-Rueda J, Liu B, Hemminga D J, Mostafa Y, Meijer R A, Kurilovich D, Basko M, Gelderblom H, Sheil J, Versolato O O 2022 Phys. Rev. Res. 4 013142Google Scholar

    [11]

    Meijer R A, Kurilovich D, Eikema K S E, Versolato O O, Witte S 2022 J. Appl. Phys. 131 105905Google Scholar

    [12]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Comm. 11 2334Google Scholar

    [13]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002Google Scholar

    [14]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [15]

    Colgan J, Kilcrease D P, Abdallah Jr J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133Google Scholar

    [16]

    Sasaki A 2024 Appl. Phys. Lett. 124 064104Google Scholar

    [17]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [18]

    Pan Y, Tomita K, Sunahara A, Sasaki A, Nishihara K 2023 Appl. Phys. Lett. 123 204103Google Scholar

    [19]

    Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017 Sci. Rep. 7 45212Google Scholar

    [20]

    Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Control. Fusion 54 055003Google Scholar

    [21]

    Nishihara K, Sunahara A, Sasaki A, Nunami M, Tanuma H, Fujioka S, Shimada Y, Fujima K, Furukawa H, Kato T, Koike F, More R, Murakami M, Nishikawa T, Zhakhovskii V, Gamata K, Takata A, Ueda H, Nishikawa T, Lzawa Y, Miyanaga N, Mima K 2008 Phys. Plasmas 15 056708Google Scholar

    [22]

    Sizyuk T, Hassanein A 2015 Phys. Plasmas 22 093101Google Scholar

    [23]

    Koshelev K N, Ivanov V V, Novikov V G, Medvedev V, Grushin A S, KrivtsunV M 2012 J. Micro. Nanolith. Mems. 11 021112Google Scholar

    [24]

    Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Comput. Phys. Commun. 302 109242Google Scholar

    [25]

    Castor J J 2004 Radiation Hydrodynamics (Cambridge: Cambridge University Press

    [26]

    Levermore C D, Pomraning G C 1981 Astrophysical Journal 248 321Google Scholar

    [27]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Nikiforov A F, Novikov V G, Uvarov V B 2005 Quantum-Statistical Models of Hot Dense Matter and Methods for Computation Opacity and Equation of State (Basel: Birkhauser Verlag

    [29]

    Heltemes T A, Moses G A 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [30]

    Faik S, Tauschwitz A, Iosilevskiy I 2018 Comput. Phys. Commun. 227 117Google Scholar

    [31]

    Young D A, Corey E M 1995 J. Appl. Phys. 78 3748Google Scholar

    [32]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energ. Dens. Phys. 1 3Google Scholar

    [33]

    Min Q, Shen R Z, Su M G, Lu H D, He S Q, Liu X B, Li Y, Tao Q Q, Wu Y H, Sun D X, Cao S Q, Dong C Z 2022 J. Phys. D: Appl. Phys. 55 505205Google Scholar

    [34]

    Magee N H, Abdallah Jr. J, Clark R E H, Cohen J S, Collins L A, Csanak G, Fontes C J, Gauger A, Keady J J, Kilcrease D P, Merts A L 1995 Astronomical Society of the Pacific Conference Series (Astrophysical Applications of Powerful New Databases, S. J. Adelman and W. L. Wiese eds.) 78 51

    [35]

    He S Q, Min Q, Wu Y H, Liu X B, He C W, Cao S Q, Pan Q K, Guo J, Chen F, Zhang D H, Su M G, Dong C Z 2024 Opt. Express 32 17088Google Scholar

    [36]

    Rodríguez R, Florido R, Gil J M, Rubiano JG, Martel P, Mínguez E 2008 Laser Part. Beams 26 433Google Scholar

    [37]

    Yan G P, Gao C, Hou Y, Jin F T, Li Y J, Zeng J L, Yuan J M 2024 Phys. Plasmas 31 093303Google Scholar

    [38]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [39]

    Busquet M 1993 Phys. Fluids B 5 4191Google Scholar

    [40]

    Busquet M, Colombant D, Klapisch M, Fyfe D, Gardner J 2009 High Energ. Dens. Phys. 5 270Google Scholar

    [41]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (California: University of California Press

    [42]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Scheers J, Kurilovich D, Bayerle A, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato1 O O 2019 Phys. Rev. Appl. 12 014010Google Scholar

  • [1] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [2] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [3] Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium. Acta Physica Sinica, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [4] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [5] Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie. Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons. Acta Physica Sinica, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [6] Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan. Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [7] Zhang Wen-Min, Zhang Ling, Cheng Yun-Xin, Wang Zheng-Xiong, Hu Ai-Lan, Duan Yan-Min, Zhou Tian-Fu, Liu Hai-Qing. Line identification of extreme ultraviolet spectra of Mo V to Mo XVIII in EAST tokamak. Acta Physica Sinica, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [8] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211450
    [9] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [10] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [11] Yang Zeng-Qiang, Zhang Li-Da. Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse. Acta Physica Sinica, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [12] Chen Hong, Lan Hui, Chen Zi-Qi, Liu Lu-Ning, Wu Tao, Zuo Du-Luo, Lu Pei-Xiang, Wang Xin-Bing. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Physica Sinica, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [13] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [14] Zhao Yong-Peng, Xu Qiang, Xiao De-Long, Ding Ning, Xie Yao, Li Qi, Wang Qi. Time behavior and optimum conditions for the Xe gas extreme ultraviolet source. Acta Physica Sinica, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [15] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [16] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [17] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] HUANG WEN-ZHONG, HE SHAO-TANG, KONG LING-HUA, HAN HONG-JUN, FANG QUAN-YU, CHEN GUO-XING. XUV SPECTRUM IN LASER-PRODUCED Ge PLASMA. Acta Physica Sinica, 1994, 43(7): 1066-1071. doi: 10.7498/aps.43.1066
    [19] WANG WEN-SHU, LI ZAN-LIANG, HUANG MAO. VACUUM ULTRAVIOLET SPECTRA OF CT-6B TOKAMAK PLASMA. Acta Physica Sinica, 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [20] WANG YONG-CHANG, E. JANNITTI, G. TONDELLO. SPECTROSCOPIC OBSERVATIONS ON THE LINE STARK BROADENING IN THE VACUUM ULTRAVIOLET IN LASER-PRODUCED PLASMAS. Acta Physica Sinica, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
Metrics
  • Abstract views:  303
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2024
  • Accepted Date:  18 November 2024
  • Available Online:  23 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回