Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum phase transition and exceptional points in dissipative optical cavity with nonlinear atom-photon interaction

LIU Ni LUO Yunqing LIANG Jiuqing

Citation:

Quantum phase transition and exceptional points in dissipative optical cavity with nonlinear atom-photon interaction

LIU Ni, LUO Yunqing, LIANG Jiuqing
cstr: 32037.14.aps.74.20250075
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Dicke model, as an important many-body model in quantum optics, describes the interaction between multiple identical two-level atoms and a quantized electromagnetic field. This spin-boson model shows collective phenomena in light-matter interaction systems and can undergo a second-order quantum phase transition from a normal phase to a superradiant phase when the coupling strength between the two-level atoms and the optical field exceeds a critical value. Dicke model embodies unique many-body quantum theories. And it has been widely studied and obtained many significant research results in quantum information, quantum process, and other quantum systems. Meanwhile, Dicke model also has wide applications in quantum optics and condensed matter physics.The extended Dicke model, describing the interaction of a Bose-Einstein condensate in an optical cavity, provides a remarkable platform for studying extraordinary quantum phase transitions in theory and experiment. Based on the recent experiment on non-Hermitian coupling between two long-lived atomic spin waves in an optical cavity, in this work we use spin-coherent-state variational method and present the macroscopic quantum-state energy of the non-Hermitian Dicke model.The spin coherent state variational method has an advantage in the theoretical research of macroscopic quantum states, especially in the normal and the inverted pseudospin states. In the variational method, optical coherent states and atomic extremum spin coherent states are used as the trial wave functions. A Hermitian transformation operator is proposed to diagonalize the non-Hermitian Hamiltonian, which is different from the ordinary quantum mechanics where the transformation operator must be unitary. Herein, the energy function is not necessarily real in the entire coupling region. Beyond an exceptional point, the spectrum becomes complex and introducing biorthogonal sets of atomic extremum states is necessary to evaluate the average quantities.The normal phase (for the zero average photon number) possesses real energy and atomic population. The non-Hermitian interaction destroys the superradiant phase (for the stable nonzero average photon number) and leads to the absence of quantum phase transition. However, the introduced atom-photon interaction, which is induced by the pump field experimentally, can change the situation, dramatically. The pump field can balance the loss by the non-Hermitian atom-photon interaction to achieve the superradiant phase.An interesting double exceptional point are observed in the energy functional. There is the real spectrum below the first exceptional point and beyond the second exceptional point, while there is a complex spectrum between these two exceptional points. The superradiant phase appears only beyond a critical value, which is related to the nonlinear interaction and the pump laser. A new and inverted quantum phase transition from the superradiant phase to the normal phase, is observed by modulating the atom-field coupling strength. The superradiant phase of the population inversion state appears for a negative effective frequency and a large atom-photon interaction. The influence of the dissipative coupling may be observed in cold atom experiment in an optical cavity. All the parameters adopted in this work are the actual experimental parameters.
      Corresponding author: LIU Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12374312) and the Scholarship Council of Shanxi Province, China (Grant No. 2022-014).
    [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [3]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [4]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. D. 70 025001Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Heiss W D 2004 J. Phys. A. 37 2455Google Scholar

    [7]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [8]

    Roccati F, Palma G M, Bagarello F, Ciccarello F 2022 Open Syst. Inf. Dyn. 29 2250004Google Scholar

    [9]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [10]

    Sticlet D, Dóra B, Moca C P 2022 Phys. Rev. Lett. 128 016802Google Scholar

    [11]

    Peng Y, Jie J W, Yu D P, Wang Y C 2022 Phys. Rev. B. 106 L161402Google Scholar

    [12]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [13]

    Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024 Phys. Rev. Lett. 132 256902Google Scholar

    [14]

    Zhang C, Liang P F, Lambert N, Cirio M 2024 Phys. Rev. Res. 6 023012Google Scholar

    [15]

    Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024 Phys. Rev. X Quantum 5 010344Google Scholar

    [16]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [17]

    Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020 Phys. Rev. Lett. 125 260601Google Scholar

    [18]

    Turkeshi X, Schiró M 2023 Phys. Rev. B 107 L020403Google Scholar

    [19]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [20]

    Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [21]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A. 90 023622Google Scholar

    [23]

    Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012 Phys. Rev. A 85 013817Google Scholar

    [24]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001Google Scholar

    [25]

    Buijsman W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [26]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A. 107 043706Google Scholar

    [27]

    Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018 Phys. Rev. A. 98 043805Google Scholar

    [28]

    Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020 Eur. Phys. J. D. 74 200Google Scholar

    [29]

    Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019 Front. Phys. 14 52602Google Scholar

    [30]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [31]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [32]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [33]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A. 75 013804Google Scholar

    [34]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [35]

    Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016 Nat. Phys. 2 1139

    [36]

    Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020 Phys. Rev. Lett. 124 030401Google Scholar

    [37]

    Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023 Nat. Nanotech. 18 706Google Scholar

    [38]

    Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601Google Scholar

    [39]

    Markham D, Vedral X 2003 Phys. Rev. A. 67 042113Google Scholar

    [40]

    Liu N, Huang S, Liang J Q 2022 Results Phys. 40 105813Google Scholar

    [41]

    Mostafazadeh A 2002 Nucl. Phys. B 640 419Google Scholar

    [42]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [43]

    Mostafazadeh A 2007 Phys. Lett. B. 650 208Google Scholar

    [44]

    Gu Y, Bai X M, Hao X L, Liang J Q 2022 Results Phys. 38 105561Google Scholar

    [45]

    Gu Y, Hao X L, Liang J Q 2022 Ann. Phys. (Berlin). 534 2200069Google Scholar

    [46]

    梁九卿, 韦联福 2023 量子物理新进展(第3版) (北京: 科学出版社)

    Liang J Q, Wei L F 2023 New Advances in Quantum Physics (3rd Ed.) (Beijing: Science Press

  • 图 1  (a) 横向泵浦激光器捕获光腔中冷原子的实验原理图; (b) 大失谐$ {\varDelta _{\mathrm{a}}} $下原子能级跃迁图

    Figure 1.  (a) Experimental schematic for cold atoms trapped in an optical cavity with a transverse pumping laser; (b) transition diagram of atomic energy level in the large detuning $ {\varDelta _{\mathrm{a}}} $.

    图 2  能量本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在${n_{\text{p}}}{\text{-}}g$平面的相图

    Figure 2.  Phase diagram of ${n_{\text{p}}}{\text{-}}g$ plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$.

    图 3  能量本征值${\varepsilon _ \pm }$的实部和虚部随原子-场耦合强度$g$(a)和平均光子数${n_{\text{p}}}$(b)变化的示意图

    Figure 3.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as a function of the atom-field coupling strength $g$(a) and the mean photon number ${n_{\text{p}}}$(b).

    图 4  (a) 平均能量${\varepsilon _ \pm }$和(b) 平均光子数${n_{\text{p}}}$随原子-场耦合强度$g$变化的示意图, 腔频率与原子跃迁频率满足关 系$ \omega_{\mathrm{f}}=\omega_0 $

    Figure 4.  (a) The average energy ${\varepsilon _ \pm }$ and (b) the average photon number ${n_{\text{p}}}$ as a function of the atom-field coupling strength $g$ with the cavity frequency and the atomic transition frequency satisfy the relation $ \omega_{\mathrm{f}}=\omega_0 $.

    图 5  本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在U-g平面的相图, 光子数${n_{\text{p}}} = 1$

    Figure 5.  Phase diagram of U-g plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$ for mean photon number ${n_{\text{p}}} = 1$.

    图 6  本征值${\varepsilon _ \pm }$的实部和虚部随原子-场耦合强度$g$(a)和原子-光子相互作用$U$(b)变化的示意图

    Figure 6.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as a function of the atom-field coupling strength $g$ (a) and the atom-photon interaction $U$(b).

    图 7  本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在${n_{\text{p}}}{\text{-}}U$平面的相图, 原子-场耦合强度$g = 5$

    Figure 7.  Phase diagram of ${n_{\text{p}}}{\text{-}}U$ plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$ for atom-field strength $g = 5$.

    图 8  本征值${\varepsilon _ \pm }$的实部和虚部随光子数${n_{\text{p}}}$ (a)和原子-光子相互作用$U$(b)变化的示意图

    Figure 8.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as functions of the photon number ${n_{\text{p}}}$(a) and the atom-photon interaction $U$(b).

    图 9  g-U空间(a)红失谐$\varDelta = 40$和(b)蓝失谐$\varDelta = - 40$的相图. 图(b)中标签(1)表示${\text{NP}_{\text{co}}}\left( {{N_ - }, {S_ + }} \right)$

    Figure 9.  Phase diagrams in the g-U space for (a) red detuning $\varDelta = 40$ and (b) blue detuning $\varDelta = - 40$. Label (1) is the NP denoted by ${\text{N}}{{\text{P}}_{{\text{co}}}}\left( {{N_ - }, {S_ + }} \right)$.

  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [3]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [4]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. D. 70 025001Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Heiss W D 2004 J. Phys. A. 37 2455Google Scholar

    [7]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [8]

    Roccati F, Palma G M, Bagarello F, Ciccarello F 2022 Open Syst. Inf. Dyn. 29 2250004Google Scholar

    [9]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [10]

    Sticlet D, Dóra B, Moca C P 2022 Phys. Rev. Lett. 128 016802Google Scholar

    [11]

    Peng Y, Jie J W, Yu D P, Wang Y C 2022 Phys. Rev. B. 106 L161402Google Scholar

    [12]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [13]

    Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024 Phys. Rev. Lett. 132 256902Google Scholar

    [14]

    Zhang C, Liang P F, Lambert N, Cirio M 2024 Phys. Rev. Res. 6 023012Google Scholar

    [15]

    Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024 Phys. Rev. X Quantum 5 010344Google Scholar

    [16]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [17]

    Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020 Phys. Rev. Lett. 125 260601Google Scholar

    [18]

    Turkeshi X, Schiró M 2023 Phys. Rev. B 107 L020403Google Scholar

    [19]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [20]

    Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [21]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A. 90 023622Google Scholar

    [23]

    Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012 Phys. Rev. A 85 013817Google Scholar

    [24]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001Google Scholar

    [25]

    Buijsman W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [26]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A. 107 043706Google Scholar

    [27]

    Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018 Phys. Rev. A. 98 043805Google Scholar

    [28]

    Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020 Eur. Phys. J. D. 74 200Google Scholar

    [29]

    Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019 Front. Phys. 14 52602Google Scholar

    [30]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [31]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [32]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [33]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A. 75 013804Google Scholar

    [34]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [35]

    Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016 Nat. Phys. 2 1139

    [36]

    Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020 Phys. Rev. Lett. 124 030401Google Scholar

    [37]

    Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023 Nat. Nanotech. 18 706Google Scholar

    [38]

    Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601Google Scholar

    [39]

    Markham D, Vedral X 2003 Phys. Rev. A. 67 042113Google Scholar

    [40]

    Liu N, Huang S, Liang J Q 2022 Results Phys. 40 105813Google Scholar

    [41]

    Mostafazadeh A 2002 Nucl. Phys. B 640 419Google Scholar

    [42]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [43]

    Mostafazadeh A 2007 Phys. Lett. B. 650 208Google Scholar

    [44]

    Gu Y, Bai X M, Hao X L, Liang J Q 2022 Results Phys. 38 105561Google Scholar

    [45]

    Gu Y, Hao X L, Liang J Q 2022 Ann. Phys. (Berlin). 534 2200069Google Scholar

    [46]

    梁九卿, 韦联福 2023 量子物理新进展(第3版) (北京: 科学出版社)

    Liang J Q, Wei L F 2023 New Advances in Quantum Physics (3rd Ed.) (Beijing: Science Press

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [2] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [3] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] Sun Zhen-Hui, Hu Li-Zhen, Xu Yu-Liang, Kong Xiang-Mu. Quantum coherence and mutual information of mixed spin-(1/2, 5/2) Ising-XXZ model on quasi-one-dimensional lattices. Acta Physica Sinica, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [5] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [7] Shi Ting-Ting, Zhang Lu-Dan, Zhang Shuai-Ning, Zhang Wei. High-order exceptional point in a quantum system of two qubits with interaction. Acta Physica Sinica, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [8] Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity. Acta Physica Sinica, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [9] You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model. Acta Physica Sinica, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [10] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [11] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [12] Ren Jie, Gu Li-Ping, You Wen-Long. Fidelity susceptibility and entanglement entropy in S=1 quantum spin chain with three-site interactions. Acta Physica Sinica, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [13] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [14] Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [15] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [16] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [17] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [18] Shan Chuan-Jia. Berry phase and quantum phase transition in spin chain system with three-site interaction. Acta Physica Sinica, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [19] Cai Zhuo, Lu Wen-Bin, Liu Yong-Jun. Effects of the staggered Dzyaloshinskii-Moriya interaction on entanglement in antiferromagnetic Heisenberg chain. Acta Physica Sinica, 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [20] Shi Zhu-Yi, Tong Hong, Shi Zhu-Ya, Zhang Chun-Mei, Zhao Xing-Zhi, Ni Shao-Yong. A possible route of nuclear quantum phase transition induced by rotation. Acta Physica Sinica, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
Metrics
  • Abstract views:  350
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2025
  • Accepted Date:  17 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回