-
Germanium material holds great potentials for application in low-power, high-mobility field-effect transistors with the advantages of high electron and hole mobility, narrow bandgap, and compatibility with silicon CMOS technologies. The development of high-quality gate oxide processes is crucial in the fabrication of high-mobility Ge-based transistors, especially those with high dielectric constant for superior gate control and preferable gate stability. Rare-earth oxides typified with LaLuO3, featuring high dielectric constants and high crystallization temperatures, are potential candidates for Ge-based MOSFET gate technology. This paper fabricates a germanium (Ge)-based oxide dielectric LaLuO3 utilizing a p-type Ge substrate with a (111) crystal orientation and a doping concentration of 1×1016 cm-3, and radio-frequency (RF) co-sputtering with 2-inch 99.9% La2O3 and Lu2O3 targets. Systematical investigations have been conducted to evaluate the effects of annealing process conditions on the characteristics of the LaLuO3/Ge MOS gate structure under three specifically designed annealing atmospheres, i.e. nitrogen, oxygen, and a nitrogen-oxygen mixed gas with N2:O2 ratio of 0.999:0.001. Meanwhile, the influence of annealing pressure has also been explored. It has been revealed that annealing in pure oxygen ambient at atmospheric pressure can diminish the hysteresis of gate capacitance but leads to a formation of interface layer. Correspondingly, annealing technique based on high-pressure and low-oxygen-content (0.1% O2) atmosphere has been developed, which not only improves the LaLuO3/Ge interface quality and suppresses the oxygen vacancy generation, but also achieves an extremely low equivalent oxide thickness (EOT) of 1.8 nm and a hysteresis voltage of only 40 mV, resulting in an ideal LaLuO3/Ge MOS structure. This work thus provides a high-performance LaLuO3/Ge gate process solution for Ge MOSFETs.
-
Keywords:
- Ge MOSFET /
- gate stack process /
- rare-earth oxide /
- high-k dielectric constant
-
[1] Del Alamo J A 2011 Nature 479 317
[2] Zhao Y, Li J K, Zheng Z J 2019 Acta Phys. Sin. 68 167301 (in Chinese) [赵毅, 李骏康, 郑泽杰 2019 物理学报 68 167301]
[3] Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501 [王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥 2024 物理学报 73 238501]
[4] Shao Y, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, Li S L 2023 Chinese Phys. Lett. 40 068501.
[5] Yan N, Xiong Z, Qin C, Li X X 2024 Chinese Phys. Lett. 41 028101
[6] Wang C, Wen P, Peng C, Xu M, Chen L L, Li X F, Zhang J H 2023 Acta Phys. Sin. 72 087302 [王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华 2024 物理学报 72 087302]
[7] Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC USA, Dec. 7−9, 2015 p2.1.1
[8] Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R, Kyser D 2002 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, Dec. 8−11, 2015 p10.2.1
[9] Cao L, Liu H 2012 Acta Phys. Sin. 61 247303 [曹磊, 刘红侠 2012 物理学报 61 247303]
[10] Kim J H, Kim S, Park B G 2019 IEEE Trans. Elec. Dev. 66 1656
[11] Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701 [陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701]
[12] Liu C, Wang X Z, Shen C, Ma L P, Yang X Q, Kong Y, Ma W, Liang Y, Feng S, Wang X Y, Wei Y N, Zhu X, Li B, Li C Z, Dong S C, Zhang L N, Ren W C, Sun D M, Cheng H M 2024 Nature 632 782
[13] Wei W, Lü W, Han Y, Chen D 2023 Chinese Phys. B 32 097301
[14] Takagi S, Zhang R, Suh J, Kim S H, Yokoyama M, Nishi K, Takenaka M 2015 Jpn. J. Appl. Phys. 54 06FA01
[15] Kamata, Y 2008 Materials today 11 30
[16] Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec. Dev. 60 927
[17] Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2003 Appl. Phys. Lett. 83 3516
[18] Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Elec. Dev. 61 2656
[19] Zhang R, Tang X, Yu X, Li J, Zhao Y. 2016 IEEE Elec. Dev. Lett. 37 831
[20] Murad S A, Baine P T, McNeill D W, Mitchell S J N, Armstrong B M, Modreanu M, Hughes G, Chellappan R K 2012 Solid-state Electrons. 78 136
[21] Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295
[22] Xie M, Nishimura T, Yajima T, Toriumi A 2020 J. Appl. Phys. 127 024101
[23] Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01
[24] Ogawa S, Suda T, Yamamoto T, Kutsuki K, Hideshima I, Hosoi T, Shimura T, Watanabe H 2011 Appl. Phys. Lett. 99 142101
[25] Roeckerath M, Heeg T, Lopes J M J, Schubert J, Mantl S, Besmehn A, Myllymӓki P, Niinistö L 2008 Thin Solid Films 517 201
[26] Goh K. H, Haseeb A S M A, Wong, Y. H 2017 Materials Science in Semiconductor Processing 68 302
[27] Gu J J, Liu Y Q, Xu M, Celler G K, Gordon R G, Ye P D 2010 Appl. Phys. Lett. 97 012106
[28] Özben E D, Lopes J M J, Nichau A, Schnee M, Lenk S, Besmehn A, Bourdelle K K, Zhao Q T, Schubert J, Mantl S 2010 IEEE Elec. Dev. Lett. 32 15
[29] Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q T 2014 Chinese Phys. Lett. 31 016101
[30] Xiong K, Robertson 2009 Microelectron. Eng. 86 1672
[31] Radtke C, Krug C, Soares G V, Baumvol I J R, Lopes J M J, Durgun-Ozben E, Nichau A, Schubert J, Mantl S 2010 Electrochem. Solid-State Lett. 13 G37
[32] Tabata T, Lee C H, Kita K, Toriumi A 2008 ECS Trans. 16 479
[33] Lee C H, Tabata T, Nishimura T, Nagashio K, Toriumi A 2012 Appl. Phys. Lett. 5 114001
Metrics
- Abstract views: 134
- PDF Downloads: 3
- Cited By: 0