Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discharge characteristics of Martian CO2 in a packed-bed dielectric barrier discharge reactor

MA Yichen WANG Yufei WANG Tingting CAO Yawen LI Zhengqing TAN Chang

Citation:

Discharge characteristics of Martian CO2 in a packed-bed dielectric barrier discharge reactor

MA Yichen, WANG Yufei, WANG Tingting, CAO Yawen, LI Zhengqing, TAN Chang
cstr: 32037.14.aps.74.20251061
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The utilization of in-situ resource on Mars is currently one of the key research focuses in deep space exploration. Non-thermal plasma technology provides a promising approach for in-situ conversion of high-concentration CO2 in the Martian atmosphere, with advantages such as strong environmental adaptability and high system efficiency. In this study, a coaxial packed-bed dielectric barrier discharge reactor is employed to investigate the discharge characteristics of simulated Martian atmospheric CO2, with particular emphasis on the effects of SiO2 and Al2O3 packing materials on CO2 conversion performance and energy consumption. Through in-situ spectral diagnostics, the variation patterns of characteristic spectral lines of excited-state CO2 and O2 under different operating conditions are investigated in this work. It is found that increasing the discharge power promotes the generation of excited-state reactive species, which facilitates the activation and conversion of carbon dioxide. Furthermore, increasing the discharge power effectively enhances the electric field strength in CO2 discharge. Compared with plasma only and the use of SiO2 packing material, the system exhibits a more significant electric field enhancement effect when packed with Al2O3 beads. Based on numerical simulations, the electron impact reaction rate constant and electron energy distribution function of CO2 discharge are obtained. The results reveal that packing the discharge gap with Al2O3 material significantly changes the physical characteristics of CO2 discharge, enhances both the electric field strength and the mean electron energy, thereby generating more high-energy electrons and asymmetric vibrational excited states of CO2. This ultimately promotes the CO2 decomposition reaction for oxygen production. Finally, the study examines the effectiveness of CO2 decomposition for oxygen production under various typical operating conditions. It is demonstrated that increasing the discharge power and packing with Al2O3 both contribute to improving the CO2 conversion rate and oxygen production rate, while reducing the energy consumption of the reaction. The introduction of Al2O3 packing enhances the electric field strength, thereby improving CO2 conversion and O2 production, achieving a CO2 conversion rate of 12.18% and a minimum energy consumption of 0.36 kWh/g. This study provides theoretical and experimental support for the future applications of non-thermal plasma technology in the in-situ resource utilization of Martian atmosphere, offering insights into sustainable resource utilization in deep space exploration.
      Corresponding author: TAN Chang, casc_tan@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12205228) and the Open Fund of National Key Laboratory of Deep Space Exploration, China (Grant No. NKDSEL2024004-1).
    [1]

    于登云, 孙泽洲, 孟林智, 石东 2016 深空探测学报 3 108

    Yu D Y, Sun Z Z, Meng L Z, Shi D 2016 J. Deep Space Explor. 3 108

    [2]

    孙泽洲, 饶炜, 贾阳, 王闯, 董捷, 陈百超 2021 空间控制技术与应用 47 9

    Sun Z Z, Rao Y, Jia Y, Wang C, Dong J, Chen B C 2021 Aerospace Control Appl. 47 9

    [3]

    Sanders G B, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne D L, Kleinhenz J E, Peters T 2015 AIAA SPACE 2015 Conference and Exposition (American Institute of Aeronautics and Astronautics

    [4]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [5]

    Zhu H W, Tan S H, Lan C T, Liu D W, Lu X P 2025 ACS Sustainable Chem. Eng. 13 8406Google Scholar

    [6]

    Hecht M, Hoffman J, Rapp D, McClean J, SooHoo J, Schaefer R, Aboobaker A, Mellstrom J, Hartvigsen J, Meyen F, Hinterman E, Voecks G, Liu A, Nasr M, Lewis J, Johnson J, Guernsey C, Swoboda J, Eckert C, Alcalde C, Poirier M, Khopkar P, Elangovan S, Madsen M, Smith P, Graves C, Sanders G, Araghi K, de la Torre Juarez M, Larsen D, Agui J, Burns A, Lackner K, Nielsen R, Pike T, Tata B, Wilson K, Brown T, Disarro T, Morris R, Schaefer R, Steinkraus R, Surampudi R, Werne T, Ponce A 2021 Space Sci. Rev. 217 9Google Scholar

    [7]

    Guerra V, Silva T, Pinhão N, Guaitella O, Guerra-Garcia C, Peeters F J J, Tsampas M N, van de Sanden M C M 2022 J. Appl. Phys. 132 070902Google Scholar

    [8]

    Engeling K W, Gott R P 2023 IEEE Tran. Plasma Sci. 51 1568Google Scholar

    [9]

    Liu Y, Silva T, Dias T C, Viegas P, Zhao X, Du Y, He J, Guerra V 2025 Plasma Sources Sci. Techn. 34 035003Google Scholar

    [10]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [11]

    Guerra V, Silva T, Ogloblina P, Grofulović M, Terraz L, Silva M L d, Pintassilgo C D, Alves L L, Guaitella O 2017 Plasma Sources Sci. Techn. 26 11LT01Google Scholar

    [12]

    Ogloblina P, Morillo-Candas A S, Silva A F, Silva T, Tejero-del-Caz A, Alves L L, Guaitella O, Guerra V 2021 Plasma Sources Sci. Techn. 30 065005Google Scholar

    [13]

    Qian M, Yan F, Zhang P, Li B, Wu Z 2024 Solar Syst. Res. 58 419Google Scholar

    [14]

    Kelly S, Verheyen C, Cowley A, Bogaerts A 2022 Chem 8 2797Google Scholar

    [15]

    Kelly S, Mercer E, Gorbanev Y, Fedirchyk I, Verheyen C, Werner K, Pullumbi P, Cowley A, Bogaerts A 2024 J. CO2 Util. 80 102668

    [16]

    Wang X C, Gao S H, Zhang Y T 2023 IEEE Trans. Plasma Sci. 51 49Google Scholar

    [17]

    O’Modhrain C, Trenchev G, Gorbanev Y, Bogaerts A 2024 ACS Eng. Au 4 333

    [18]

    付强, 叶子凡, 王语菲, 常正实 2023 石油学报(石油加工) 39 1003

    Fu Q, Ye Z F, Wang Y F, Chang Z S 2023 Acta Petrolei Sin. (Petroleum Processing Section) 39 1003

    [19]

    Fu Q, Wang Y, Chang Z 2023 Journal of CO2 Utilization 70 102430

    [20]

    Fu Q, Ye Z, Guo H, Duan Z, Luo J, Chang Z 2024 Plasma Process. Polym. 21 e2400085Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Wang X C, Bai J X, Zhang T H, Sun Y, Zhang Y T 2022 Vacuum 203 111200Google Scholar

    [23]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H-H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [24]

    Ashford B, Wang Y L, Poh C K, Chen L W, Tu X 2020 Appl. Catal. B: Environ. Energy 276 119110Google Scholar

    [25]

    Mei D H, Zhu X B, Wu C F, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B: Environ. Energy 182 525Google Scholar

    [26]

    Francke K P, Rudolph R, Miessner H 2003 Plasma Chem. Plasma Process. 23 47Google Scholar

    [27]

    Zoran F, John J C 1997 J. Phys. D: Appl. Phys. 30 817Google Scholar

    [28]

    Xu S, Khalaf P I, Martin P A, Whitehead J C 2018 Plasma Sources Sci. Techn. 27 075009Google Scholar

    [29]

    Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Techn. 24 015011

    [30]

    Wang Y L, Craven M, Yu X T, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catal. 9 10780Google Scholar

    [31]

    Ma Y C, Wang Y L, Harding J, Tu X 2021 Plasma Sources Sci. Techn. 30 105002Google Scholar

    [32]

    李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 物理学报 57 1001Google Scholar

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001Google Scholar

    [33]

    Tu X, Gallon H J, Twigg M V, Gorry P A, Whitehead J C 2011 J. Phys. D: Appl. Phys. 44 274007Google Scholar

    [34]

    Reyes P, Gomez A, Vergara J, Martínez H, Torres C 2017 Rev. Mex. Fis. 63 363

    [35]

    Wang Y L, Yang J Q, Sun Y H, Ye D Q, Shan B, Tsang S C E, Tu X 2024 Chem 10 2590Google Scholar

    [36]

    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) pp157−258

    [37]

    Mackus A J M, Heil S B S, Langereis E, Knoops H C M, van de Sanden M C M, Kessels W M M 2009 J. Vac. Sci. Techn. A 28 77

    [38]

    Reyes P G, Mendez E F, Osorio-Gonzalez D, Castillo F, Martínez H 2008 Phys. Status Solidi C 5 907Google Scholar

    [39]

    Li Z, Gillon X, Diallo M, Houssiau L, Pireaux J J 2011 J. Phys. Conf. Ser. 275 012020Google Scholar

    [40]

    Shao T, Yang Y X, Tu X, Murphy A B 2025 Fundament. Res. in Press

    [41]

    Gallon H J, Kim H H, Tu X, Whitehead J C 2011 IEEE Trans. Plasma Sci. 39 2176Google Scholar

    [42]

    Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Techn. 26 085007Google Scholar

    [43]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Techn. 14 722Google Scholar

    [44]

    IST-Lisbon database, www. lxcat. net 2025-06-12

    [45]

    Wang X C, Ai F, Zhang Y T 2024 Phys. Plasmas 31 013504Google Scholar

    [46]

    Wang X C, Li W K, Zhang Y T 2024 IEEE Trans. Plasma Sci. 52 1631Google Scholar

    [47]

    Ning W J, Shang H, Li Y J, Wen X, Shen S K, Huang X L, Jia S L 2025 Plasma Sources Sci. Techn. 34 095001Google Scholar

  • 图 1  等离子体火星CO2转化系统示意图

    Figure 1.  Schematic diagram of the plasma-based Mars CO2 conversion system.

    图 2  介质阻挡放电的典型李萨如图形

    Figure 2.  Typical Q-U Lissajous figure of the DBD.

    图 3  不同填充状态下的CO2放电波形图 (a) 空管; (b) 填充SiO2; (c) 填充Al2O3

    Figure 3.  The electrical signals of different filling states: (a) Plasma only; (b) packed with SiO2; (c) packed with Al2O3.

    图 4  填充Al2O3情况下的CO2介质阻挡放电发射光谱图

    Figure 4.  Emission spectrum of CO2 DBD packed with Al2O3.

    图 5  不同填充状态下放电功率对(a) CO2 (391 nm)和(b) O2 (386 nm)谱线相对强度的影响

    Figure 5.  Effect of discharge power on the relative intensities of (a) CO2 (391 nm) and (b) O2 (386 nm) using different packing materials.

    图 6  不同填充状态下放电功率对约化场强的影响

    Figure 6.  The reduced electric field as a function of discharge power using different packing materials.

    图 7  不同工况下约化场强对平均电子能量的影响(彩色区域表示本研究中的约化场强范围)

    Figure 7.  Calculated mean electron energy as a function of the reduced electric field (the coloured area illustrates the range of the reduced electric field in this study).

    图 8  不同工况下放电功率对平均电子能量的影响

    Figure 8.  Calculated mean electron energy as a function of discharge power.

    图 9  平均电子能量对不同CO2反应路径的反应速率常数的影响(彩色区域表示本研究中的平均电子能量范围)

    Figure 9.  The rate coefficients of different CO2 reaction channels as a function of the mean electron energy (the coloured area illustrates the range of the mean electron energy in this study).

    图 10  不同填充状态下放电功率对(a)二氧化碳转化率, (b)制氧速率和(c)反应能耗的影响

    Figure 10.  The effect of discharge power under different filling states: (a) CO2 conversion; (b) O2 production rate; (c) energy consumption.

    图 A1  在(a)空管, (b)填充SiO2, (c)填充Al2O3的工况下放电功率对部分激发态特征谱线相对强度的影响

    Figure A1.  Effect of discharge power on the relative intensities of excited species using different packing materials: (a) Plasma only; (b) SiO2; (c) Al2O3.

    表 1  不同填充状态下放电功率对平均电场强度的影响

    Table 1.  Effect of packing materials on the average electric field at different discharge powers.

    放电功率/W 平均电场强度/(kV·cm–1)
    空管 SiO2 Al2O3
    10 1.32 1.40 1.55
    12.5 1.46 1.48 1.72
    15 1.53 1.61 1.79
    17.5 1.68 1.74 1.95
    20 1.82 1.88 2.11
    DownLoad: CSV

    表 A1  数值模拟中的二氧化碳活性粒子的种类及参数

    Table A1.  Types and parameters of carbon dioxide reactive species in numerical simulations.

    活性粒子
    种类
    物理意义描述 能量/eV
    振动
    激发态
    CO2 (0 1 0) 0.083
    CO2 (0 2 0) 0.167
    CO2 (1 0 0) 0.167
    CO2 (0 3 0) + (1 1 0) 0.252
    CO2 (0 0 1) 0.291
    CO2 (0 4 0) + (1 2 0) + (0 1 1) 0.339
    CO2 (2 0 0) 0.339
    CO2 (0 5 0) + (2 1 0) + (1 3 0)
    + (0 2 1) + (1 0 1)
    0.422
    CO2 (3 0 0) 0.5
    CO2 (0 6 0) + (2 2 0) + (1 4 0) 0.505
    CO2 (0 n 0) + (n 0 0) 2.5
    电子式
    激发态
    CO2 (e1) 7.0
    CO2 (e2) 10.5
    离子 CO2+ 13.8
    DownLoad: CSV
  • [1]

    于登云, 孙泽洲, 孟林智, 石东 2016 深空探测学报 3 108

    Yu D Y, Sun Z Z, Meng L Z, Shi D 2016 J. Deep Space Explor. 3 108

    [2]

    孙泽洲, 饶炜, 贾阳, 王闯, 董捷, 陈百超 2021 空间控制技术与应用 47 9

    Sun Z Z, Rao Y, Jia Y, Wang C, Dong J, Chen B C 2021 Aerospace Control Appl. 47 9

    [3]

    Sanders G B, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne D L, Kleinhenz J E, Peters T 2015 AIAA SPACE 2015 Conference and Exposition (American Institute of Aeronautics and Astronautics

    [4]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [5]

    Zhu H W, Tan S H, Lan C T, Liu D W, Lu X P 2025 ACS Sustainable Chem. Eng. 13 8406Google Scholar

    [6]

    Hecht M, Hoffman J, Rapp D, McClean J, SooHoo J, Schaefer R, Aboobaker A, Mellstrom J, Hartvigsen J, Meyen F, Hinterman E, Voecks G, Liu A, Nasr M, Lewis J, Johnson J, Guernsey C, Swoboda J, Eckert C, Alcalde C, Poirier M, Khopkar P, Elangovan S, Madsen M, Smith P, Graves C, Sanders G, Araghi K, de la Torre Juarez M, Larsen D, Agui J, Burns A, Lackner K, Nielsen R, Pike T, Tata B, Wilson K, Brown T, Disarro T, Morris R, Schaefer R, Steinkraus R, Surampudi R, Werne T, Ponce A 2021 Space Sci. Rev. 217 9Google Scholar

    [7]

    Guerra V, Silva T, Pinhão N, Guaitella O, Guerra-Garcia C, Peeters F J J, Tsampas M N, van de Sanden M C M 2022 J. Appl. Phys. 132 070902Google Scholar

    [8]

    Engeling K W, Gott R P 2023 IEEE Tran. Plasma Sci. 51 1568Google Scholar

    [9]

    Liu Y, Silva T, Dias T C, Viegas P, Zhao X, Du Y, He J, Guerra V 2025 Plasma Sources Sci. Techn. 34 035003Google Scholar

    [10]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [11]

    Guerra V, Silva T, Ogloblina P, Grofulović M, Terraz L, Silva M L d, Pintassilgo C D, Alves L L, Guaitella O 2017 Plasma Sources Sci. Techn. 26 11LT01Google Scholar

    [12]

    Ogloblina P, Morillo-Candas A S, Silva A F, Silva T, Tejero-del-Caz A, Alves L L, Guaitella O, Guerra V 2021 Plasma Sources Sci. Techn. 30 065005Google Scholar

    [13]

    Qian M, Yan F, Zhang P, Li B, Wu Z 2024 Solar Syst. Res. 58 419Google Scholar

    [14]

    Kelly S, Verheyen C, Cowley A, Bogaerts A 2022 Chem 8 2797Google Scholar

    [15]

    Kelly S, Mercer E, Gorbanev Y, Fedirchyk I, Verheyen C, Werner K, Pullumbi P, Cowley A, Bogaerts A 2024 J. CO2 Util. 80 102668

    [16]

    Wang X C, Gao S H, Zhang Y T 2023 IEEE Trans. Plasma Sci. 51 49Google Scholar

    [17]

    O’Modhrain C, Trenchev G, Gorbanev Y, Bogaerts A 2024 ACS Eng. Au 4 333

    [18]

    付强, 叶子凡, 王语菲, 常正实 2023 石油学报(石油加工) 39 1003

    Fu Q, Ye Z F, Wang Y F, Chang Z S 2023 Acta Petrolei Sin. (Petroleum Processing Section) 39 1003

    [19]

    Fu Q, Wang Y, Chang Z 2023 Journal of CO2 Utilization 70 102430

    [20]

    Fu Q, Ye Z, Guo H, Duan Z, Luo J, Chang Z 2024 Plasma Process. Polym. 21 e2400085Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Wang X C, Bai J X, Zhang T H, Sun Y, Zhang Y T 2022 Vacuum 203 111200Google Scholar

    [23]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H-H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [24]

    Ashford B, Wang Y L, Poh C K, Chen L W, Tu X 2020 Appl. Catal. B: Environ. Energy 276 119110Google Scholar

    [25]

    Mei D H, Zhu X B, Wu C F, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B: Environ. Energy 182 525Google Scholar

    [26]

    Francke K P, Rudolph R, Miessner H 2003 Plasma Chem. Plasma Process. 23 47Google Scholar

    [27]

    Zoran F, John J C 1997 J. Phys. D: Appl. Phys. 30 817Google Scholar

    [28]

    Xu S, Khalaf P I, Martin P A, Whitehead J C 2018 Plasma Sources Sci. Techn. 27 075009Google Scholar

    [29]

    Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Techn. 24 015011

    [30]

    Wang Y L, Craven M, Yu X T, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catal. 9 10780Google Scholar

    [31]

    Ma Y C, Wang Y L, Harding J, Tu X 2021 Plasma Sources Sci. Techn. 30 105002Google Scholar

    [32]

    李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 物理学报 57 1001Google Scholar

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001Google Scholar

    [33]

    Tu X, Gallon H J, Twigg M V, Gorry P A, Whitehead J C 2011 J. Phys. D: Appl. Phys. 44 274007Google Scholar

    [34]

    Reyes P, Gomez A, Vergara J, Martínez H, Torres C 2017 Rev. Mex. Fis. 63 363

    [35]

    Wang Y L, Yang J Q, Sun Y H, Ye D Q, Shan B, Tsang S C E, Tu X 2024 Chem 10 2590Google Scholar

    [36]

    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) pp157−258

    [37]

    Mackus A J M, Heil S B S, Langereis E, Knoops H C M, van de Sanden M C M, Kessels W M M 2009 J. Vac. Sci. Techn. A 28 77

    [38]

    Reyes P G, Mendez E F, Osorio-Gonzalez D, Castillo F, Martínez H 2008 Phys. Status Solidi C 5 907Google Scholar

    [39]

    Li Z, Gillon X, Diallo M, Houssiau L, Pireaux J J 2011 J. Phys. Conf. Ser. 275 012020Google Scholar

    [40]

    Shao T, Yang Y X, Tu X, Murphy A B 2025 Fundament. Res. in Press

    [41]

    Gallon H J, Kim H H, Tu X, Whitehead J C 2011 IEEE Trans. Plasma Sci. 39 2176Google Scholar

    [42]

    Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Techn. 26 085007Google Scholar

    [43]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Techn. 14 722Google Scholar

    [44]

    IST-Lisbon database, www. lxcat. net 2025-06-12

    [45]

    Wang X C, Ai F, Zhang Y T 2024 Phys. Plasmas 31 013504Google Scholar

    [46]

    Wang X C, Li W K, Zhang Y T 2024 IEEE Trans. Plasma Sci. 52 1631Google Scholar

    [47]

    Ning W J, Shang H, Li Y J, Wen X, Shen S K, Huang X L, Jia S L 2025 Plasma Sources Sci. Techn. 34 095001Google Scholar

  • [1] LI Long, CUI Xinglei, ZHU Xi, FANG Zhi. Generation and discharge characteristics of indirect dielectric barrier discharge with meter-scale width. Acta Physica Sinica, 2025, 74(23): 235213. doi: 10.7498/aps.74.20251163
    [2] LI Cheng, YAN Zhihao, QI Xiaoxiu, LI Yuxin, PAN Yuyang, DONG Lifang. D2h superlattice patterns in dielectric barrier discharge with striped water electrode. Acta Physica Sinica, 2025, 74(22): 225202. doi: 10.7498/aps.74.20250985
    [3] CAI Jiahe, DAI Dong, PAN Yongquan. Influence of surface-adhered water droplets on discharge characteristics and chemical species distribution in atmospheric-pressure helium dielectric barrier discharge system. Acta Physica Sinica, 2025, 74(23): 235204. doi: 10.7498/aps.74.20250827
    [4] Liu Kai, Fang Ze, Dai Dong. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage. Acta Physica Sinica, 2023, 72(13): 135201. doi: 10.7498/aps.72.20230385
    [5] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [6] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [7] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi. Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [8] Zhang Tai-Heng, Wang Xu-Cheng, Zhang Yuan-Tao. Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions. Acta Physica Sinica, 2021, 70(21): 215201. doi: 10.7498/aps.70.20210664
    [9] Li Xue-Chen, Chang Yuan-Yuan, Liu Run-Fu, Zhao Huan-Huan, Di Cong. Investigation on the characteristics of dielectric barrier discharge with fairly large volume generated in air at atmospheric pressure. Acta Physica Sinica, 2013, 62(16): 165205. doi: 10.7498/aps.62.165205
    [10] Dai Dong, Wang Qi-Ming, Hao Yan-Peng. Experimental study on asymmetrical period-one discharge in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [11] Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei. Plasma parameters of square superlattice pattern in a dielectric barrier discharge. Acta Physica Sinica, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [12] Wang Xiao-Qing, Dai Dong, Hao Yan-Peng, Li Li-Cheng. Experimental confirmation on period-doubling bifurcation and chaos in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [13] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [14] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [15] Dong Li-Fang, Li Shu-Feng, Liu Feng, Liu Fu-Cheng, Liu Shu-Hua, Fan Wei-Li. Square and hexagon pattern formation in dielectric barrier discharge in argon at atmospheric pressure. Acta Physica Sinica, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [16] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [17] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [18] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [19] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, Wang Long. . Acta Physica Sinica, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
Metrics
  • Abstract views:  506
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2025
  • Accepted Date:  10 October 2025
  • Available Online:  14 October 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回