-
This paper proposes a new extended polysilicon gate bulk silicon lateral insulated gate bipolar transistor (EGBS-LIGBT). In order to suppress the hole substrate current, N-type and P-type silicon are epitaxially grown on the P-substrate sequentially to serve as N-drift and P-drift. The PN junction composed of two drift regions is in a reverse-biased state during both normal conduction and off states of the device. The built-in potential within it forms a hole-blocking barrier to prevent holes from moving towards the substrate. Meanwhile, a Schottky-extended polysilicon gate (S-EG) is added on the P-drift, forming a thin electron-inversion layer on the inner surface of the P-drift, which can achieve a low on-state voltage (Von). In addition, the Schottky contact at the anode reduces hole injection efficiency, while the rapid dynamic electric field modulation capability of P-drift enables the swift extraction of excess carriers stored in this region. The majority carriers in the P-drift being holes can also accelerate the recombination with the excess electrons during the turn-off phase. The above factors help to reduce the turn-off time and the turn-off energy loss (Eoff). Simulation results show that EGBS-LIGBT effectively reduces the hole substrate current while improves the trade-off relationship between Eoff and Von. In this paper, EGBS-LIGBT has a Von of 1.59 V, hole substrate current is 1.9 mA/cm2, Eoff is 0.51 mJ/cm2, and breakdown voltage (BV) is 701V. Compared with conventional LIGBT, Von is approximately equal, hole substrate current is reduced to 1/105 of it, Eoff is reduced by 69.8%, and BV is improved by 19.6%.
-
Keywords:
- LIGBT /
- Hole substrate current /
- Turn-off loss /
- Schottky contact
-
[1] Du Y C 2025 M.S. Dissertation (Nanjing: Southeast University) (in Chinese) [杜益成 2025硕士学位论文 (南京:东南大学)]
[2] N. Sakurai, M. Mori, T. Yatsuo 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD 1990-04 p66
[3] D. Disney, T. Letavic, T. Trajkovic, T. Terashima, A. Nakagawa 2017 IEEE Trans. Electron Devices 64 659
[4] L. Sun, B. Duan, Y. Wang, Y. Yang 2019 IEEE Transactions on Electron Devices 66 2675
[5] J. Wei, K. Dai, K. Yang, P. Zhu, J. Li, Z. Li, B. Zhang, X. Luo 2023 IEEE Transactions on Electron Devices 70 662
[6] B. Duan, J. Wang, C. Tang, Y. Yang 2024 IEEE Electron Device Lett. 45 1926
[7] J. Yang, M. Zhang, Y. Wu, M. Wang, J. Wei 2022 IEEE Electron Device Lett. 43 272
[8] R. Zeng, Z. Wu, S. Lei, L. Liao, Y. Feng 2024 IEEE Access 12 123071
[9] Su, Goodson, Antoniadis, Flik, Chung 1992 International Technical Digest on Electron Devices Meeting San Francisco, CA, USA, 1992 p357
[10] E. Arnold, H. Pein, S. P. Herko 1994 Proceedings of IEEE International Electron Devices Meeting San Francisco, CA, USA, 1994 p813
[11] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, F.-Y. Jian, W.-H. Lo, S.-H. Ho, C.-E. Chen, W.-L. Chung, J.-M. Shih, G. Xia, O. Cheng, and C.-T. Huang 2011 Dai IEEE Electron Device Lett. 32 847
[12] W. W. T. Chan, J. K. O. Sin S. S. Wong 1995 Proceedings of International Electron Devices Meeting 1995-12 p971
[13] B. Bakeroot, J. Doutreloigne, P. Moens 2006 IEEE Electron Device Lett. 27 492
[14] B. Bakeroot, J. Doutreloigne, P. Vanmeerbeek, P. Moens 2008 IEEE Transactions on Electron Devices 55 435
[15] R. Y. Su, C. C. Cheng, K. H. Huo, F. J. Yang, J. L. Tsai, R. S. Liou, and H. C. Tuan 2012 24th International Symposium on Power Semiconductor Devices and ICs Bruges, Belgium, 2012-06 p221
[16] Y.-C. Tsai, J. Gong, W.-C. Chan, S.-Y. Wu, C. Lien 2015 IEEE Electron Device Lett. 36 929
[17] H. Fujii, S. Komatsu, M. Sato, T. Ichikawa 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs 2011-05 p372
[18] V. Pathirana, N. Udugampola, T. Trajkovic, F. Udrea 2018 IEEE Electron Device Lett. 39 866
[19] Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang 2024 Acta Phys. Sin. 73(7) 078501 (in Chinese) [段宝兴, 刘雨林, 唐春萍, 杨银堂 2024 物理学报 73(7) 078501]
[20] Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang 2024 Acta Phys. Sin. 2024 73(15) 157301 (in Chinese) [段宝兴, 王佳森, 唐春萍, 杨银堂 2024 物理学报 73(15) 157301]
[21] DUAN Baoxing, REN Yuhao, TANG Chunping, YANG Yintang 2025 Acta Phys. Sin. 2025 74(8) 087301 (in Chinese) [段宝兴, 任宇壕, 唐春萍, 杨银堂 2025 物理学报 74(8) 087301]
[22] Zuxin Qin, E. M. S. Narayanan 1997 Proceedings of 9th International Symposium on Power Semiconductor Devices and Ic’s Weimar, Germany,1997 p313
[23] X. Luo 2019 IEEE Trans. Electron Devices 66 1390
[24] Y. Gu 2024 IEEE Trans. Electron Devices 71 381
[25] L. Sun, B. Duan, Y. Yang 2021 IEEE J. Electron Devices Soc. 9 409
Metrics
- Abstract views: 24
- PDF Downloads: 0
- Cited By: 0









下载: