Search

Article

x
Special topic

更多 
Topics
Article Type

Correlated electron materials and scattering spectroscopy

     关联电子材料是凝聚态物理的基础前沿领域, 深刻体现了凝聚态物质中“多者异也 (more is different)”的特征. 由于材料内部自旋、轨道、电荷等多种自由度的相互耦合, 关联电子材料中蕴含了极其丰富的相互作用机制, 进而层展出一系列关联物态, 例如高温超导电性、重费米子、庞磁阻、量子自旋液体、量子相变、奇异金属、磁性关联拓扑等, 具有重大的材料学应用价值. 但是, 强关联特性意味着电子-电子间的相互作用已不可忽略, 传统的基于密度泛函的计算难以准确理解其机制或预言其关联物态特性, 因此关联电子材料的机理研究往往是由实验技术发展和实验观测结果所驱动的. 理解关联电子物态的关键在于明确材料中各个自由度的能量尺度、耦合方式和竞争关系. 散射谱学是关联电子材料非常重要的定量研究技术, 包括基于光子、电子、中子、缪子等为探测媒介的各类非弹性散射实验技术及方法学.

       近年来, 我国学者在关联电子材料探索与谱学基础研究领域作出了重要的前沿性工作, 一批具有国际影响力的中青年科学家得以迅速成长. 一方面, 随着镍氧化物超导体、准二维铁基超导体、笼目结构材料、磁性拓扑材料、量子自旋液体材料、磁卡制冷材料等多个关联电子新材料家族不断涌现, 关联电子材料的物性和机理的谱学研究结果极大丰富了我们对其微观机理的认识. 另一方面,我国在中子源、同步辐射光源、自由电子激光、缪子源等大科学装置平台上的散射谱仪建设也发展迅速.

       为此, 受《物理学报》编辑部委托, 我们邀请了十余位国内外优秀的青年科学家, 组织了 “关联电子材料与散射谱学”专题. 专题涵盖了多种新型关联电子材料的散射谱学最新研究结果, 亦涉及热电材料、压卡材料、磁卡材料等多种实用化的材料谱学研究. 同时, 还介绍了我国多个大科学装置上散射谱仪平台建设进展及其应用领域, 并以铁基超导体为例展示了单轴应变调控在不同散射谱学中的具体应用. 专题文章形式包括综述、观点评述等, 希望通过介绍关联电子材料与散射谱学领域的最新发展动态与学术思考, 推动关联电子物态相关研究的协同创新及多平台、多技术、多学科的交叉合作, 在物质科学基础前沿领域抢占国际制高点.

     

客座编辑:罗会仟 中国科学院物理研究所; 彭莹莹 北京大学物理学院; 童欣 中国科学院高能物理研究所/中国散裂中子源
Acta Physica Sinica. 2024, 73(19).
Research progress of resonant X-ray scattering of charge order in cuprate superconductors
CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi
2025, 74 (8): 087402. doi: 10.7498/aps.74.20241402
Abstract +
Unconventional superconductivity often competes or coexists with a variety of complex material states. In cuprate superconductors, there exist states including spin order, charge order, the pseudogap state, and the strange metal phase. A comprehensive understanding of their relationship is fundamental to establishing the mechanism of high-temperature superconductivity. Spin dynamics in cuprates has been extensively investigated using inelastic neutron scattering, but charge correlations remain far less understood. The latest development of resonant X-ray scattering (RXS) has been able to detect charge correlations with unprecedented sensitivity. A series of RXS studies have revealed that there universally exist the charge correlations in cuprate materials, which covers a wide range of the phase diagram. Resonant inelastic X-ray scattering (RIXS) experiments further show the dynamical behaviors of charge order. These findings highlight the important influence of charge correlations on the properties of cuprates. In this paper, we review the latest research progress in the charge order in cuprates by using RXS, with a particular emphasis on RIXS experiments. Our focus is placed on recent works on dynamical charge correlations at high temperatures as well as uniaxial strain tuning of charge order. We discuss topics including the underlying interactions, microscopic structure and symmetries, and the possible influence of charge order on both the superconducting and normal states.
Inelastic neutron scattering spectrometer and its applications
HU Ze, YUAN Yuan, LI Lisi, REN Qingyong, FENG Yu, SHEN Junying, LUO Wei, TONG Xin
2025, 74 (1): 012501. doi: 10.7498/aps.74.20241412
Abstract +
Inelastic neutron scattering is a pivotal technique in materials science and physics research, revealing the microscopic dynamic properties of materials by observing the changes in energy and momentum of neutrons interacting with matter. This technique provides important information for quantitatively describing the phonon dispersion and magnetic excitation of materials. Inelastic neutron scattering spectrometers can be divided into triple-axis spectrometers and time-of-flight spectrometers, according to the method of selecting monochromatic neutrons. The former has high signal-to-noise ratio, flexibility, and precise tracking capabilities for specific measurement points, while the latter significantly improves experimental efficiency through various measures. The application of inelastic neutron scattering spectrometers is quite extensive, playing an indispensable role in advancing frontier scientific research in the study of mechanisms in various materials such as magnetism, superconductivity, thermoelectrics, and catalysis. The high-energy inelastic spectrometer at the China Spallation Neutron Source is the first time-of-flight neutron inelastic spectrometer in China, achieving high resolution and multi-energy coexistence with its innovative Fermi chopper design. Additionally, the number of available single neutron beams in the experiment of this facility has reached the international leading level.
Neutron scattering studies of complex lattice dynamics in energy materials
REN Qingyong, WANG Jianli, LI Bing, MA Jie, TONG Xin
2025, 74 (1): 012801. doi: 10.7498/aps.74.20241178
Abstract +
Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials. Many excellent energy materials have complex multiple-sublattice structures, with intricate lattice dynamics, and the underlying mechanisms are difficult to understand. Neutron scattering technologies, which are known for their high energy and momentum resolution, are powerful tools for simultaneously characterizing material structure and complex lattice dynamics. In recent years, neutron scattering techniques have made significant contributions to the study of energy materials, shedding light on their physical mechanisms. Starting from the basic properties of neutrons and double differential scattering cross sections, this review paper provides a detailed introduction to the working principles, spectrometer structures, and functions of several neutron scattering techniques commonly used in energy materials research, including neutron diffraction and neutron total scattering, which characterize material structures, and quasi-elastic neutron scattering and inelastic neutron scattering, which characterize lattice dynamics. Then, this review paper presents significant research progress in the field of energy materials utilizing neutron scattering as a primary characterization method.1) In the case of Ag8SnSe6 superionic thermoelectric materials, single crystal inelastic neutron scattering experiments have revealed that the “liquid-like phonon model” is not the primary contributor to ultra-low lattice thermal conductivity. Instead, extreme phonon anharmonic scattering is identified as a key factor based on the special temperature dependence of phonon linewidth.2) Analysis of quasi-elastic and inelastic neutron scattering spectra reveals the changes in the correlation between framework and Ag+ sublattices during the superionic phase transition of Ag8SnSe6 compounds. Further investigations using neutron diffraction and molecular dynamics simulations reveal a new mechanism of superionic phase transition and ion diffusion, primarily governed by weakly bonded Se atoms.3) Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration, and the strengthening of phonon anharmonicity with temperature rising can decouple this interaction and induce plastic phase transition. This phenomenon results in a significant configuration entropy change, showing its potential applications in barocaloric refrigeration.4) In the CsPbBr3 perovskite photovoltaic materials, inelastic neutron scattering uncovers low-energy phonon damping of the [PbBr6] sublattice, influencing electron-phonon coupling and the band edge electronic state. This special anharmonic vibration of the [PbBr6] sublattice prolongs the lifetime of hot carriers, affecting the material's electronic properties.5) In MnCoGe magnetic refrigeration materials, in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in changing crystal structural stability and magnetic interactions. This process triggers a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure, expanding our understanding of magnetic phase transition regulation.These examples underscore the interdependence between lattice dynamics and other degrees of freedom in energy conversion and storage materials, such as sublattices, charge, and spin. Through these typical examples, this review paper can provide a reference for further exploring and understanding the energy materials and lattice dynamics.
Application of neutron scattering to studying low lattice thermal conductivity of Zintl phase compounds
ZHANG Cuiping, ZHU Jinfeng, SHEN Xiaoling, SHU Mingfang, REN Qingyong, MA Jie
2025, 74 (1): 017301. doi: 10.7498/aps.74.20241163
Abstract +
Due to the unique crystal structures and excellent transport properties, the Zintl phase thermoelectric materials have aroused extensive interest in energy storage and conversion. To explore the origins of those excellent performances, a series of experimental and theoretical techniques have been applied, such as neutron scattering, thermal conductivity, and molecular dynamics simulations with machine learning. In this paper, the progress of neutron scattering research on the structure and dynamics of Zintl phase is summarized, for example A14MPn11 compounds with zero-dimensional (0D) substructures, 1D chains-based compounds, 2D layered A2BX2 compounds (including the binary Mg3Sb2) and their structural variants, as well as AB4X3, and ZrBeSi-type compounds. The underlying mechanisms of intrinsically low lattice thermal conductivity in those Zintl phase are discussed in detail. These compounds generally exhibit the following characteristics: 1) strong anharmonicity, which is characterized by strong atomic vibrations and anharmonic phonon-phonon scattering; 2) weak chemical bonding, which usually leads to low sound velocity and interatomic force constants, and corresponding to low-energy phonon branches; 3) intrinsic vacancy defect, which weakens the bond strengths, softens the lattice, and enhances anharmonic phonon-phonon scattering. Neutron diffraction is applied to studying crystal structures, lattice parameters, atomic occupancies, and atomic displacement parameters. Inelastic neutron scattering measures the lattice dynamics, and density of states, which are related to lattice thermal conductivity. Hence, the physical mechanisms of Zintl compounds are analyzed for optimizing material properties and designing new functional materials.
Spin excitation spectra of iron pnictide superconductors
LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian
2025, 74 (1): 017401. doi: 10.7498/aps.74.20241534
Abstract +
Spin fluctuations are often considered the most likely candidates for superconducting electron pairing media in unconventional superconductors. The iron-based superconductors provide a wide range of opportunities for studying the mechanism of unconventional superconductivity, as they have many systems with different structures and rich magnetisms. Taking the iron pnictide superconductors for example, this review summarizes the inelastic neutron scattering results of the spin excitation spectrum of iron-based superconductors, especially for their common features.Firstly, we introduce the direct connection between the low-energy spin excitations and superconductivity, which is so called the neutron spin resonance mode. This mode widely exists in the superconducting states of all iron-based superconductors, where the resonance energy ER is linearly proportional to the critical temperature Tc: ER = 4.9kBTc, and it has a universal c-axis preferred characteristic. The in-plane dispersion of spin resonance mode is not limited by the superconducting energy gap, which is in contrast to the traditional spin exciton model. The out-of plane dispersion of spin resonance mode is determined by the Fe-As interplanar distance, indicating that the three-dimensional spin correlation effect cannot be ignored, which may be the key to clarifying the role of spin fluctuations in superconductivity.Secondly, we summarize the energy dispersion, intensity distribution, and total fluctuating moment for high energy spin excitations. Although the Heisenberg model can roughly describe the similar dispersions in different systems based on the anisotropic in-plane nearest neighbor effective exchange couplings and the similar second nearest neighbor effective exchange coupling, the correlated Hubbard model based on itinerant magnetism can more accurately describe the spin wave behavior after degeneracy, thus the spin excitations are more likely to be understood from the perspective of itinerant magnetism. The spin excitation intensity varies greatly with energy in different systems, indicating a competitive relationship between itinerant and localized magnetic interactions. However, the total fluctuating moments are generally the same, indicating that the effective spin S = 1/2. The spin excitation bandwidth is in a range of 100–200 meV, probably is correlated with the height of As away from the Fe-Fe plane.Finally, we make a comprehensive comparison of the spin excitations in iron-based superconductors and copper oxide superconductors. The spin excitation spectra of iron-based superconductors have much richer physics than cuprates, due to the complex physics of multiple orbitals, Fermi surfaces, and energy gaps. These phenomena lead to the diversity of spin excitations, especially the prominent three-dimensional spin correlation effect. This indicates that interlayer pairing and intra layer pairing driven by spin interactions are equally important and must be fully considered in microscopic theories of high-Tc superconductivity.
2024, 73 (19): 190101. doi: 10.7498/aps.73.190101
Abstract +
Hefei Advanced Light Facility: Empowering research of correlated electron systems
Sun Zhe, Shen Da-Wei, Luo Zhen-Lin, Yan Wen-Sheng
2024, 73 (19): 190703. doi: 10.7498/aps.73.20240943
Abstract +
The Hefei Advanced Light Facility is the fourth-generation diffraction-limited storage ring light source, scheduled to begin operation in 2028. With its high-brightness and highly coherent X-rays, it will break through the current spatiotemporal resolution bottlenecks of X-ray techniques in studying correlated electron systems, providing crucial information for understanding the nature and microscopic origins of novel physical properties in these materials. This article introduces the main scientific goals and technical advantages of the Hefei Advanced Light Facility, focusing on the application perspectives of advanced technologies such as angle-resolved photoemission spectroscopy, magnetic circular dichroism, coherent X-ray scattering, and coherent X-ray imaging in researches of quantum materials and correlated electron systems. These techniques will enable the detailed analysis of the distribution and dynamics of electronic/spin/orbital states, reveal various novel quantum phenomena, and elucidate the fluctuations of order parameters in correlated electron systems. The completion of the Hefei Advanced Light Facility will provide advanced technical supports for decoding complex quantum states and non-equilibrium properties, ultimately promoting the application of quantum materials and correlated electron systems in frontier fields such as energy and information.
Advances in free-electron-laser based scattering techniques and spectroscopic methods
Zhong Yin-Peng, Yang Xia
2024, 73 (19): 194101. doi: 10.7498/aps.73.20240930
Abstract +
In 2005, the FLASH soft X-ray free-electron laser (FEL) in Hamburg, Germany, achieved its first lasing, which began an intensive phase of global FEL construction. Subsequently, the United States, Japan, South Korea, China, Italy, and Switzerland all began building such photon facilities. Recently, the new generation of FEL has started to utilize superconducting acceleration technology to achieve high-repetition-rate pulse output, thereby improving experimental efficiency. Currently completed facility is the European XFEL, ongoing constructions are the LCLS-II in the United States and the SHINE facility in Shanghai, and the facility in preparation is the Shenzhen superconducting soft X-ray free-electron laser (S3FEL).These FEL facilities generate coherent and tunable ultrashort pulses ranging from the extreme ultraviolet to hard X-ray spectrum, which advances the FEL-based scattering techniques such as ultrafast X-ray scattering, spectroscopy, and X-ray nonlinear optics, thereby transforming the way we study correlated quantum materials on an ultrafast timescale.The self-amplified spontaneous emission (SASE) process in FEL leads to timing jitter between FEL pulses and the synchronized pump laser, influencing the accuracy of ultrafast time-resolved measurements. To address this issue, timing tools have been developed to measure these jitters and reindexed each pump-probe signal after measurement. This success enables ultrafast X-ray diffraction (UXRD) to be first realized, and a systematic study of Peierls distorted materials is demonstrated. In addition, the high flux of FEL pulses enables Fourier transform inelastic X-ray scattering (FT-IXS) method, which can extract the phonon dispersion curve of the entire Brillouin zone by performing the Fourier transform on the measured momentum dependent coherent phonon scattering signals, even when the system is in a non-equilibrium state.The UXRD is typically used to study ultrafast lattice dynamics, which requires hard X-ray wavelengths. In contrast, time resolved resonant elastic X-ray scattering (tr-REXS) in the soft X-ray regime has become a standard method of investigating nano-sized charge and spin orders in correlated quantum materials on an ultrafast time scale.In correlated quantum materials, the interplay between electron dynamics and lattice dynamics represents another important research direction. In addition to Zhi-Xun Shen's successful demonstration of the combined tr-ARPES and UXRD method at SLAC, this paper also reports the attempts to integrate UXRD with resonant X-ray emission spectroscopy (RXES) for the simultaneous measurement of electronic and lattice dynamics.Resonant inelastic X-ray scattering (RIXS) is a powerful tool for studying elementary and collective excitations in correlated quantum materials. However, in FEL-based soft X-ray spectroscopy, the wavefront tilt introduced by the widely used grating monochromators inevitably stretches the FEL pulses, which degrades the time resolution. Therefore, the new design at FEL beamlines adopts low line density gratings with long exit arms to reduce pulse stretch and achieve relatively high energy resolution. For example, the Heisenberg-RIXS instrument at the European XFEL achieves an energy resolution of 92 meV at the Cu L3 edge and approximately 150 fs time resolution.In recent years, scientists at SwissFEL’s Furka station have drawn inspiration from femtosecond optical covariance spectroscopy to propose a new method of generating two-dimensional time-resolved resonant inelastic X-ray scattering (2D tr-RIXS) spectra. This method involves real-time detection of single-shot FEL incident and scattered spectra, followed by deconvolution calculation to avoid photon waste and wavefront tilt caused by monochromator slits. The SQS experimental station at European XFEL, built in 2023, features a 1D-XUV spectrometer that utilizes subtle variations in photon energy absorption across the sample to induce spatial energy dispersion. Using Wolter mirrors, it directly images spatially resolved fluorescence emission from the sample onto the detector to generate 2D tr-RIXS spectra without the need for deconvolution. However, this design is limited to specific samples. Currently, the S3FEL under designing has a novel 2D tr-RIXS instrument that uses an upstream low line density grating monochromator to generate spatial dispersion of the beam spot, allowing the full bandwidth of SASE to project spatially dispersed photon energy onto the sample. Subsequently, an optical design similar to the 1D-XUV spectrometer will be employed to achieve 2D tr-RIXS spectra, thereby expanding the applicability beyond specific liquid samples. These new instruments are designed to minimize pulse elongation by fully utilizing SASE’s full bandwidth, approaching Fourier-transform-limited RIXS spectra in both time and energy resolution.Nonlinear X-ray optical techniques, such as sum-frequency generation (SFG) and second-harmonic generation, are adapting to X-ray wavelengths and opening up new avenues for detecting elementary excitations. The X-ray transient grating spectroscopy extends its capabilities to studying charge transport and spin dynamics on an ultrafast timescale. The future development of these scattering methods provides unique opportunities for detecting dynamical events in various systems, including surface and interface processes, chirality, nanoscale transport, and so-called multidimensional core-level spectroscopy.
Uniaxial-strain tuning method in study of iron-based superconductors
Li Chun-Yi, Mo Zi-Ye, Lu Xing-Ye
2024, 73 (19): 197103. doi: 10.7498/aps.73.20241080
Abstract +
In the study of quantum materials, introducing pressure and strain that can change lattice parameters and symmetry is an effective experimental method for manipulating the electronic properties of the system. In measurements under hydrostatic pressure or in-plane epitaxial strain, the changes in lattice parameters will lead to significant changes in the electronic structure, thereby triggering off novel quantum phenomena and phase transitions. By comparison, the in-plane uniaxial strain, which has been widely employed in recent years, not only changes lattice parameters, but also directly destroys and controls the symmetry of the system, thereby affecting the electronic ordering state and even collective excitation of the system. This article provides a comprehensive overview of the basic concepts of uniaxial strain, the development of experimental methods, and some research progress in using these methods to regulate superconductivity and electronic nematicity in iron-based superconductors. This review contains six sections. Section 1 focuses on a genetral introduction for the uniaxial strain techque and the arrangement of this paper. Section 2 is devoted to the basic concepts and formulas related to elastic moduli and the decomposition of uniaxial strain into irreducible symmetric channels under D4h point group. Section 3 gives iron-based superconductors (FeSCs) and discusses the uniaxial-pressure detwinning method and related research progress. Section 4 introduces the establishment of the elastoresistance as a probe of the nematic susceptibility and discusses the key researches in this direction. Section 5 describes the research progress of the effects of uniaxial strain on superconductivity and nematicity. In sections 4 and 5, key experimental techniques, such as elastoresistance, are discussed in detail. Section 6 extends the discussion to several types of quantum materials suitable for uniaxial-strain tuning method beyond the FeSCs. Finally, we provide a brief summary and outlook on the uniaxial strain tuning technique. Overall, this review article provides valuable resources for the beginners in the field of FeSC and those who are interested in using uniaxial strain to modulate the electronic properties of quantum materials. By summarizing recent advancements and experimental techniques, this review hopes to inspire further research and innovation in studying electronic materials under uniaxial strain.
Experimental research progress of charge order of nickelate based superconductors
Shen Yao
2024, 73 (19): 197104. doi: 10.7498/aps.73.20240898
Abstract +
Ever since the discovery, nickelate superconductors have attracted great attention, declaring a “nickel age” of superconductivity. Currently, there are two types of nickelate superconductors: low-valence nickelate superconductors REn+1NinO2n+2 (RE, rare earth; n, number of adjacent NiO2 layers) and high-pressure nickelate superconductors La3Ni2O7 and La4Ni3O10. Charge order plays a crucial role in studying the strongly correlated systems, especially the cuprate superconductors, in which potential correlation between charge order and superconductivity has been indicated. Thus, great efforts have been made to explore the charge order in nickelate superconductors. In the infinite-layer nickelate RENiO2, the evidence of charge order with in-plane wavevector of Q // ≈ (1/3, 0) has been found in the undoped and underdoped regime but not in the superconducting samples. However, subsequent studies have indicated that this is not the true charge order inherent in the NiO2 plane,which carries unconventional superconductivity, but rather originates from the ordered excess apical oxygen in the partially reduced impurity phases. On the other hand, the overdoped low-valence nickelate La4Ni3O8 shows well-defined intertwined charge and magnetic order, with an in-plane wavevector of Q // = (1/3, 1/3). Resonant X-ray scattering study has found that nickel orbitals play the most important role in the multi-orbital contribution of charge order formation in this material, which is significantly different from the cuprates with oxygen orbitals dominating the charge modulation. Although the spin order in La3Ni2O7 has been well established, there is still controversy over its spin structure and the existence of coexisting charge order. In La4Ni3O10, intertwined charge and spin density waves have been reported, the origin and characteristics of which remain unknown. Owing to the research on the nickelate superconductors just starting, many questions have not yet been answered, and the exploration of charge order in nickelate superconductors will still be the center of superconductor research.
Resonant inelastic X-ray scattering applications in quantum materials
Zhou Ke-Jin
2024, 73 (19): 197301. doi: 10.7498/aps.73.20241009
Abstract +
The essence of quantum materials lies in the intricate coupling among charge, spin, orbital and lattice degrees of freedom. Although X-ray photoemission spectroscopy and inelastic neutron scattering have advantages in detecting fermionic single-particle spectral function and bosonic spin excitations in quantum materials, respectively, probing other bosonic collective excitations especially their coupling is not possible until the establishment of the advanced resonant inelastic X-ray scattering (RIXS). In the past decades, RIXS has flourished with continuously improved energy resolution which made a paradigm shift from measuring crystal-field splitting and the charge-transfer excitation, to probing collective excitations and the order parameters of all degrees of freedom. This review paper summarises the latest research progress of quantum materials studied by the soft X-ray RIXS. For instance, three-dimensional collective charge excitations, plasmons, were discovered experimentally by RIXS in both electron and hole doped cuprate superconductors. The collective orbital excitations and excitons were found in copper and nickel based quantum materials. For the newly discovered nickelate superconductors, RIXS has made substantial contributions to characterising their electronic and magnetic excitations and the related ordering phenomena critical for an in-depth understanding of the underlying superconducting mechanicsm. The RIXS is a unique tool in probing the higher-order spin excitations in quantum materials due to the strong spin-orbit coupling and the core-valence exchange interaction. The RIXS is also found to be superior in probing the Stoner magnetic excitations in magnetic metals and topological magnetic materials. Finally, the development of RIXS technology in Chinese large-scale research facilities is briefly prospected.
Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors
Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying
2024, 73 (19): 197401. doi: 10.7498/aps.73.20240983
Abstract +
In the 38 years since the discovery of cuprate superconductors, the theoretical mechanism of high-temperature superconductivity remains unresolved. Recent experimental progress has focused on exploring microscopic mechanisms by using novel characterization techniques. The development of synchrotron radiation has driven significant progress in spectroscopic methods. Resonant inelastic X-ray scattering (RIXS), based on synchrotron radiation, has been widely used to study cuprate superconductors due to its ability to perform bulk measurements, provide energy-momentum resolution, and directly probe various elemental excitations. The RIXS can measure phonons, which bind Cooper pairs in the BCS theory, and magnetic fluctuations and competing orders predicted by the Hubbard model in strongly correlated systems, allowing for the study of their interrelationships. This paper reviews the progress in using RIXS to measure charge density waves and related low-energy excitations, including phonon anomalies, in cuprate superconductors. It also examines the relationship between magnetic excitation and the highest superconducting transition temperature, and provides prospects for future research directions and challenges.
μSR experimental progress and trends of developing muon facilities
Wang Ying, Shu Lei
2024, 73 (19): 197601. doi: 10.7498/aps.73.20240940
Abstract +
Muon spin relaxation/rotation (μSR) is a highly sensitive technique for investigating magnetic properties on an atomic scale. With the continuous development of this technique, the researches in condensed matter physics have been significantly promoted. Firstly, this article introduces the advantages and uniqueness of μSR technique, followed by several recent progress contributed by μSR in the field of condensed matter physics, including revealing the magnetic ground state of superconducting nickelates La3Ni2O7 and (R, Sr)NiO2, the investigation into the charge density wave in kagome lattice superconductor AV3Sb5 (A = K, Rb), identifying the magnetic droplets immersed in a sea of quantum spin liquid ground state in NaYbSe2, and the exploration of magnetic monopole near a magnetoelectric surface of Cr2O3. Finally, this article summarizes the current construction status and upgrade plans of muon facilities in the world.
Muon spectrometers on China Spallation Neutron Source and its application prospects
Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu
2024, 73 (19): 197602. doi: 10.7498/aps.73.20240926
Abstract +
The China Spallation Neutron Source Phase-II Project (CSNS-II) includes the construction of a muon source, namely “Muon station for sciEnce technoLOgy and inDustrY” (MELODY). A muon target station and a surface muon beam line will be completed as scheduled in 2029, making MELODY the first Chinese muon facility. This beam line mainly focuses on the application of muon spin relaxation/rotation/resonance (μSR) spectroscopy. The MELODY also reserves the tunnels for building a negative muon beam line and a decay muon beam line in the future, thereby further expanding the research field to muon-induced X-ray emission (MIXE) elemental analysis and μSR measurements in thick cells, respectively. The two types of material characterization technologies keep their uniqueness in multi-disciplinary researches, and also provide complementary insights for other techniques, such as neutron scattering, nuclear magnetic resonance, and X-ray fluorescence analysis.The μSR spectroscopy is a mature technology for injecting highly spin polarized muon beams into various types of materials. The subsequent precession and relaxation of muon spin in its surrounding atomic environment reflect the static and dynamical properties of the material of interest, which are then measured by detecting the asymmetric emission of positrons from the decay of those muons, with an average lifetime of approximately 2.2 μs. This enables μSR to develop into a powerful quantum magnetic probe for investigating materials related to magnetism, superconductivity, and molecular dynamics. The combination of a positive muon and an electron is known as muonium, which is a unique and sensitive probe in studying semiconductors, new energy materials, free radical chemistry, etc. As the production of muon beams strongly relies on proton accelerator, only five muon facilities in the world are available for μSR experiments. This limits the large-scale application of muon related sciences. Especially, Chinese researchers face fierce competition and can only apply for precious and limited muon beam time from international muon sources to characterize the key properties of their materials.The construction of the MELODY muon facility at CSNS-II aims to provide intense and pulsed muon beams for Chinese and international users to conduct their μSR measurements with high quality data in a low repetition rate operation mode. To achieve this goal, as shown in Fig. 1, the μSR spectrometer is designed with 1) over 3000 detector units to obtain a sufficient counting rate of 80 Million/h to significantly suppress statistical fluctuations in a short measuring time, 2) a high asymmetry of 0.3 to greatly amplify μSR signals so as to further reduce statistical fluctuations, and 3) extendable low temperature devices to cover most μSR applications and also fulfill experiments with extreme condition requirements.The MIXE elemental analysis is a type of particle induced X-ray emission (PIXE) technology. Due to the heavier mass of negative muon, the energy of muonic X-ray is around 207 higher than that of X-ray or electron induced fluorescence X-ray. Thus, the MIXE technology is more sensitive to materials with low atomic numbers, and thick samples can be effectively studied without scratching their surfaces. Due to these advantages, the MIXE has been successfully applied to the elemental analysis of cultural heritages, meteorites, Li-ion batteries, etc. MELODY reserves tunnels for negative muon extractions and transport to a MIXE terminal. The MELODY research team is developing a new detection technology with high energy resolution and high counting capability to shorten the measuring time to an acceptable amount based on the 1-Hz repetition rate of muon pulses.The μSR spectroscopy and MIXE are the two most important application fields of accelerator muon beams. The MELODY muon facility aims to develop and promote these technologies in China by constructing dedicated muon beam lines in CSNS-II and in the future. In this overview, we introduce the principles and advantages of the μSR and MIXE technologies, as well as the physical design and application prospects of the μSR and MIXE spectrometers based on the CSNS-II muon source. Finally, discussions and expectations are made regarding the future upgrade of the CSNS-II muon source’s muon beamline and its broader applications.