搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变石墨烯纳米带谐振特性的分子动力学研究

顾芳 张加宏 杨丽娟 顾斌

引用本文:
Citation:

应变石墨烯纳米带谐振特性的分子动力学研究

顾芳, 张加宏, 杨丽娟, 顾斌

Molecular dynamics simulation of resonance properties of strain graphene nanoribbons

Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin
PDF
导出引用
  • 从动势能转换与守恒原理出发,在微正则(NVE)系综下,采用COMPASS力场对石墨烯纳米带及其应变传感器的谐振特性进行了分子动力学模拟.研究发现,非线性响应主导了石墨烯纳米带的动态行为,而其超高的基波频率则与长度和边界条件密切相关;单轴拉伸应变对石墨烯纳米带基波频率的影响显著且强烈依赖于边界条件,四边固支型应变石墨烯纳米带具有更高的频移,其灵敏度可高达7800 Hz/nanostrain,远大于相同长度碳纳米管应变传感器的灵敏度;石墨烯纳米带及其应变传感器的谐振特性均与手性无关.本文所得结果表明,由于超低
    Starting from the energy conversion and energy conservation law in the constant-NVE ensemble, the molecular dynamics method using the COMPASS force field was applied to investigate the dynamic properties of graphene nanoribbons (GNRs) together with the GNR-based strain sensors. The following results were obtained: (a) the nonlinear response dominates the dynamic behavior of GNRs, and their ultra-high fundamental frequencies are closely related with the length and boundary conditions; (b) the effect of uniaxial tensile strain on the fundamental frequencies of GNRs is significant and strongly depends on boundary conditions, and the GNR-based strain sensor clamped on four edges has a higher frequency shift, and its sensitivity is up to 7800 Hz / nanostrain, much higher than that of carbon nanotube-based strain sensor with the same length; (c) the resonant characteristics of GNRs and GNR-based strain sensors are insensitive to the chirality. The obtained results suggest that, through cutting the appropriate size and setting the boundary conditions, the GNRs could be used to design a new generation of nanoelectromechanical system (NEMS) resonators and strain sensors, owing to their ultra-low density and ultra-high fundamental frequencies as well as ultra-high sensitivity without considering the impact of chirality.
    • 基金项目: 国家自然科学基金(批准号:10847147),南京信息工程大学科研基金(批准号:20080296),东南大学MEMS教育部重点实验室开放研究基金和南京信息工程大学微纳电子创新团队基金(批准号:N0575003411)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nature Nanotech. 3 654

    [4]

    Darancet P, Olevano V, Mayou D 2009 Phys. Rev. Lett. 102 136803

    [5]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [6]

    Liao W, Zhou G, Xi F 2008 J. Appl. Phys. 104 126105

    [7]

    Liu J, Wright A R, Zhang C, M Z 2008 Appl. Phys. Lett. 93 041106

    [8]

    Chang C P, Lu C L, Shyu F L, Chen R B, Fang Y K, Lin M F 2004 Carbon 42 2975

    [9]

    Abanin D A, Levitov L S 2007 Science 317 641

    [10]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [11]

    Garcia-Sanchez D, van der Zande A M, San Paulo A, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nature Nanotech. 4 861

    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、 杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛2005 物理学报 54 4251]

    [14]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res 1 116

    [15]

    Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [16]

    Gunlycke D, White C T 2008 Phys. Rev. B 77 115116

    [17]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [18]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平、徐慧、林 峰2009 物理学报 58 4132]

    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009物理学报 58 7156]

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702

    [22]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196

    [23]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168

    [24]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

    [25]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104

    [26]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705

    [27]

    Girit  O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [28]

    Ritter K A, Lyding J W 2009 Nature Mater. 8 235

    [29]

    Zhou J, Huang R 2008 J. Mech. Phys. Solids 56 1609

    [30]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [31]

    Bu H, ChenY F, Zou M, Yi H, Bi K D, Ni Z H 2009 Phys. Lett. A 373 3359

    [32]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Nanotechnology 21 115709

    [33]

    Li Y, Qiu X M, Yang F,Wang X S, Yin Y J 2008 Nanotechnology 19 165502

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotech. 3 491

    [3]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nature Nanotech. 3 654

    [4]

    Darancet P, Olevano V, Mayou D 2009 Phys. Rev. Lett. 102 136803

    [5]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [6]

    Liao W, Zhou G, Xi F 2008 J. Appl. Phys. 104 126105

    [7]

    Liu J, Wright A R, Zhang C, M Z 2008 Appl. Phys. Lett. 93 041106

    [8]

    Chang C P, Lu C L, Shyu F L, Chen R B, Fang Y K, Lin M F 2004 Carbon 42 2975

    [9]

    Abanin D A, Levitov L S 2007 Science 317 641

    [10]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [11]

    Garcia-Sanchez D, van der Zande A M, San Paulo A, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399

    [12]

    Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nature Nanotech. 4 861

    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, Lü L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、 杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛2005 物理学报 54 4251]

    [14]

    Ci L J, Xu Z P, Wang L L, Gao W, Ding F, Kelly K F, Yakobson B I, Ajayan P M 2008 Nano Res 1 116

    [15]

    Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [16]

    Gunlycke D, White C T 2008 Phys. Rev. B 77 115116

    [17]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [18]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平、徐慧、林 峰2009 物理学报 58 4132]

    [19]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009物理学报 58 7156]

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702

    [22]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196

    [23]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168

    [24]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

    [25]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104

    [26]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705

    [27]

    Girit  O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [28]

    Ritter K A, Lyding J W 2009 Nature Mater. 8 235

    [29]

    Zhou J, Huang R 2008 J. Mech. Phys. Solids 56 1609

    [30]

    Zhao H, Min K, Aluru N R 2009 Nano Lett. 9 3012

    [31]

    Bu H, ChenY F, Zou M, Yi H, Bi K D, Ni Z H 2009 Phys. Lett. A 373 3359

    [32]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Nanotechnology 21 115709

    [33]

    Li Y, Qiu X M, Yang F,Wang X S, Yin Y J 2008 Nanotechnology 19 165502

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [3] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [7] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [8] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [9] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [12] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [13] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] 卢果, 王帅创, 张广财, 许爱国. 分子动力学中应变分析的统计矩方法及应用. 物理学报, 2012, 61(7): 073102. doi: 10.7498/aps.61.073102
    [15] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [16] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响. 物理学报, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 成步文, 姚 飞, 薛春来, 张建国, 李传波, 毛容伟, 左玉华, 罗丽萍, 王启明. 带隙法测定SiGe/Si材料的应变状态. 物理学报, 2005, 54(9): 4350-4353. doi: 10.7498/aps.54.4350
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  7938
  • PDF下载量:  1402
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-20
  • 修回日期:  2010-08-26
  • 刊出日期:  2011-05-15

/

返回文章
返回