搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶六方SiC和多晶化学气相沉积SiC的常温辐照肿胀差异性

臧航 黄智晟 李涛 郭荣明

引用本文:
Citation:

单晶六方SiC和多晶化学气相沉积SiC的常温辐照肿胀差异性

臧航, 黄智晟, 李涛, 郭荣明

Comparative study of irradiation swelling in monocrystalline and polycrystalline silicon carbide

Zang Hang, Huang Zhi-Sheng, Li Tao, Guo Rong-Ming
PDF
导出引用
  • SiC具有耐辐射、低感生放射性、耐高温等特点,在先进核能系统中具有重要的应用.用1.5 MeV的Si离子在常温下注入单晶六方SiC和多晶化学气相沉积SiC,注量分别为1101421016cm-2和1101521016cm-2,利用X射线衍射(XRD)仪和白光干涉仪测量材料的晶格常数和辐照肿胀随着注量增大的变化规律.结果显示:在1.5 MeV Si离子常温辐照下,注量达到21015cm-2时,单晶六方SiC完全非晶化;注量在1101551015cm-2,单晶六方SiC的辐照肿胀明显高于多晶化学气相沉积SiC的辐照肿胀;注量达到11016cm-2时,单晶六方SiC和多晶化学气相沉积SiC的辐照肿胀达到饱和并趋于一致,肿胀结果表明常温辐照环境下多晶化学气相沉积SiC的非晶化阈值剂量大于单晶六方SiC.通过分析单晶六方SiC和多晶化学气相沉积SiC常温辐照肿胀差异的原因,研究了晶界对SiC材料非晶化肿胀规律的影响,并对XRD辐照肿胀测量方法的适用范围进行了讨论.
    Silicon carbide (SiC) is considered as one of the most promising structural and coating materials for advanced nuclear applications, due to its low neutron capture cross section and excellent irradiation resistance. The difference in swelling behavior between monocrystalline and polycrystalline SiC is experimentally investigated by heavy ion irradiation at room temperature (RT). In this work, single crystal hexagonal (6H) SiC and polycrystalline chemically vapor-deposited (CVD) SiC are irradiated by 1.5 MeV Si ions with the fluences of 11014-21016 cm-2 and 11015-21016 cm-2, respectively, at RT. The step height of irradiation swelling is measured by a white light interferometer and the lattice expansion of the damage layer is characterized by using X-ray diffraction (XRD) spectrometry, in addition, the actual irradiation swelling is obtained by dividing the height of swelling step by the depth of damage layer. The XRD profiles show that the lattice expansion in the damage layer increases with the increase of irradiation fluence, and the new diffraction peak relating to the lattice structure of damage layer disappears in a fluence of 21015 cm-2, which means that the damage layer is completely amorphous at this time and the threshold dose of amorphization at RT in single crystal 6H-SiC is less than 0.8 dpa. The direct-impact model is used to fit the swelling step heights of CVD SiC and 6H-SiC irradiated by 1.5 MeV Si, and the swelling results show that the amorphization threshold dose of polycrystalline CVD SiC is larger than that of single crystal 6H-SiC. In the present work, three distinct stages are found in the heavy-ion irradiation swellings between monocrystalline and polycrystalline SiC. i.e., low-fluence region, intermediate-fluence region, and high-fluence region stage. 1) In the low-fluence region, the swellings are similar to each other, since the swelling is mainly contributed to by point defects in this region, and the micron sized grains in polycrystalline CVD SiC are of single crystal structure. 2) In the intermediate-fluence region, the irradiation swelling of the polycrystalline CVD SiC is smaller than that of the single crystal 6H-SiC, since the irradiation-induced amorphousness in polycrystalline CVD SiC is relatively hard to occur due to the existence of grain boundary in this region. 3) The irradiation swellings of 6H-SiC and CVD SiC are almost the same at the high-fluence region stage, since the irradiation swelling is caused by amorphization in this region, and the swelling depends on the difference between densities before and after irradiation. In addition, in the irradiation swelling analysis of SiC materials, XRD swelling measurement method is suitable for irradiation swelling induced by point defects, especially for neutron irradiation experiments.
      通信作者: 臧航, zanghang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11405124)、国家教育部博士点专项基金(批准号:20130201120065)和陕西省自然科学基础研究计划(批准号:2015JQ1030)资助的课题.
      Corresponding author: Zang Hang, zanghang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405124), the Doctoral Fund of Ministry of Education of China (Grant No. 20130201120065), and the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1030).
    [1]

    Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M 2011 J. Nucl. Mater. 417 330

    [2]

    Newsome G, Snead L L, Hinoki T, Katoh Y, Peters D 2007 J. Nucl. Mater. 371 76

    [3]

    Snead L L, KatohY, Koyanagi T, Terrani K, Specht E D 2016 J. Nucl. Mater. 471 92

    [4]

    Snead L L, Katoh Y, Connery S 2007 J. Nucl. Mater. 367370 677

    [5]

    Zang H, Guo D X, Shen T L, He C H, Wang Z G, Pang L L, Yao C F, Yang T 2013 J. Nucl. Mater. 433 378

    [6]

    Weber W J, Wang L M, Yu N, Hess N J 1998 Mater. Sci. Eng. A 253 62

    [7]

    Jiang W L, Zhang Y W, Weber W J 2004 Phys. Rev. 70 165208

    [8]

    Snead L L, Zinkle S J, Hay J, Osborne M 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 141 123

    [9]

    Kim W J, Park J N, Cho M S, Park J Y 2009 J. Nucl. Mater. 392 213

    [10]

    Friedland E, van der Berg N G, Malherbe J B, Hancke J J, Barry J, Wendler E, Wesch W 2011 J. Nucl. Mater. 410 24

    [11]

    Zang H, Yang T, Guo D X, Xi J Q, He C H, Wang Z G, Shen T L, Pang L L, Yao C F, Zhang P 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 558

    [12]

    Yang T, Zang H, He C H, Guo D X, Zhang P, Xi J Q, Ma L, Wang Z G, Shen T L, Pang L L, Yao C F 2015 Int. J. Appl. Ceram. Technol. 12 390

    [13]

    Blagoeva D T, Hegeman J B J, Jong M, Heijna M C R, de Vicente S M Gonzalez, Bakker T, ten Pierick P, Nolles H 2015 Mater. Sci. Eng. A 638 305

    [14]

    Ackland G 2010 Science 327 1587

    [15]

    Snead L L 2004 J. Nucl. Mater. 329333 524

    [16]

    Idris M I, Konishi H, Imai M, Yoshida K, Yano T 2015 Energy Procedia. 71 328

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818

    [18]

    Devanathan R, Weber W J 2000 J. Nucl. Mater. 278 258

    [19]

    Kerbiriou X, Costantini J M, Sauzay M, Sorieul S, Thom? L, Jagielski J, Grob J J 2009 J. Appl. Phys. 105 073513

    [20]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 166167 98

    [21]

    Zhang Y W, Weber W J, Jiang W L, Halln A, Possnert G 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 195 320

    [22]

    Gao F, Weber W J 2004 Phys. Rev. B 69 224108

    [23]

    Lin Y R, Ku C S, Ho C Y, Chuang W T, Kondo S, Kai J J 2015 J. Nucl. Mater. 459 276

  • [1]

    Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M 2011 J. Nucl. Mater. 417 330

    [2]

    Newsome G, Snead L L, Hinoki T, Katoh Y, Peters D 2007 J. Nucl. Mater. 371 76

    [3]

    Snead L L, KatohY, Koyanagi T, Terrani K, Specht E D 2016 J. Nucl. Mater. 471 92

    [4]

    Snead L L, Katoh Y, Connery S 2007 J. Nucl. Mater. 367370 677

    [5]

    Zang H, Guo D X, Shen T L, He C H, Wang Z G, Pang L L, Yao C F, Yang T 2013 J. Nucl. Mater. 433 378

    [6]

    Weber W J, Wang L M, Yu N, Hess N J 1998 Mater. Sci. Eng. A 253 62

    [7]

    Jiang W L, Zhang Y W, Weber W J 2004 Phys. Rev. 70 165208

    [8]

    Snead L L, Zinkle S J, Hay J, Osborne M 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 141 123

    [9]

    Kim W J, Park J N, Cho M S, Park J Y 2009 J. Nucl. Mater. 392 213

    [10]

    Friedland E, van der Berg N G, Malherbe J B, Hancke J J, Barry J, Wendler E, Wesch W 2011 J. Nucl. Mater. 410 24

    [11]

    Zang H, Yang T, Guo D X, Xi J Q, He C H, Wang Z G, Shen T L, Pang L L, Yao C F, Zhang P 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 558

    [12]

    Yang T, Zang H, He C H, Guo D X, Zhang P, Xi J Q, Ma L, Wang Z G, Shen T L, Pang L L, Yao C F 2015 Int. J. Appl. Ceram. Technol. 12 390

    [13]

    Blagoeva D T, Hegeman J B J, Jong M, Heijna M C R, de Vicente S M Gonzalez, Bakker T, ten Pierick P, Nolles H 2015 Mater. Sci. Eng. A 638 305

    [14]

    Ackland G 2010 Science 327 1587

    [15]

    Snead L L 2004 J. Nucl. Mater. 329333 524

    [16]

    Idris M I, Konishi H, Imai M, Yoshida K, Yano T 2015 Energy Procedia. 71 328

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818

    [18]

    Devanathan R, Weber W J 2000 J. Nucl. Mater. 278 258

    [19]

    Kerbiriou X, Costantini J M, Sauzay M, Sorieul S, Thom? L, Jagielski J, Grob J J 2009 J. Appl. Phys. 105 073513

    [20]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 166167 98

    [21]

    Zhang Y W, Weber W J, Jiang W L, Halln A, Possnert G 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 195 320

    [22]

    Gao F, Weber W J 2004 Phys. Rev. B 69 224108

    [23]

    Lin Y R, Ku C S, Ho C Y, Chuang W T, Kondo S, Kai J J 2015 J. Nucl. Mater. 459 276

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [3] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [8] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [9] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究. 物理学报, 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [10] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [11] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [12] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [13] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [14] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [15] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [16] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [17] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  5153
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2016-12-22
  • 刊出日期:  2017-03-05

/

返回文章
返回