搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析

徐驰 万发荣

引用本文:
Citation:

聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析

徐驰, 万发荣

Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material

Xu Chi, Wan Fa-Rong
PDF
HTML
导出引用
  • 对纯钨透射电镜薄膜样品在400 ℃ 进行了58 keV、 1×1017 cm–2 (约0.1 dpa) 的氘离子辐照, 辐照后进行了900 ℃/1 h的退火处理. 离子辐照产生了平均尺寸为(11.10±5.41) nm, 体密度约为2.40×1022 m–3 的细小位错环组织, 未观察到明显的空洞组织. 辐照后退火造成了位错环尺寸的长大和体密度的下降, 分别为(18.25±16.92) nm和1.19×1022 m–3. 通过透射电镜的衍射衬度分析, 判断辐照后退火样品中的位错环主要为 a /2$\left\langle {111} \right\rangle $类型位错环. 通过“一步法” inside-outside衬度分析判断位错环为间隙型位错环. 辐照后退火还造成了较大位错环之间接触融合, 形成不规则形状的大型位错环. 此外, 退火后样品中还观察到了尺寸为1—2 nm的细小空洞组织.
    Tungsten is an important candidate of plasma-facing material for fusion reactors. Its irradiation response, especially the post-irradiation annealing (PIA) behavior needs further investigating. In addition, the practice of the “inside-outside” contrast method of determining the characteristics of irradiation induced dislocation loops has not been utilized frequently, and the present research serves as an example to present some practical considerations. In the present work, a tungsten thin-foil specimen is irradiated at 400 ℃ with 58 keV D+ to a final fluence of 1× 1017 cm–2, corresponding to a dose of about 0.1 dpa. The specimen is prepared through the electro-polishing method by using a NaOH based electrolyte. The ion irradiation is carried out directly on the electro-polished specimen. The irradiated specimen is followed by isothermal annealing at 900 ℃ for 1 h. The as-irradiated and post-irradiation annealing modified defects are investigated with a transmission electron microscope (TEM) operated at 200 kV. The irradiation defects are characterized by using TEM bright-field imaging for the same imaging field with different g vectors around the three major zone axes: the [001], [111], and [011] zone axis of the body-center cubic lattice of W. For each g vector, the ± g are characterized, and the corresponding contrast-extinctions and “inside-outside” contrasts of selected dislocation loops are identified. The indices of the g vectors around different zone axes are assigned consistently with the Kikuchi map. As a result, the D+ irradiation increases a fine distribution of dislocation loops with an average size of (11.10±5.41) nm and a bulk density of 2.40×1022 /m3. Voids are not observed obviously. The post-irradiation annealing causes the loop size to increase and the loop density to decrease, with numbers of (18.25±16.92) nm and 1.19×1022 /m3, respectively. Through the contrast-extinction analysis, the dislocation loops in the irradiated and annealed specimen are identified to be a /2$\langle {111} \rangle$-type dislocation loops. The post-irradiation annealing also causes the coalescence of large loops and forms large irregular-shaped dislocation loops. Voids with typical sizes of 1–2 nm are also observed in the annealed specimen. The PIA modified microstructure is consistent with the stage IV or stage V characterization of classical PIA induced microstructures. Through the “one-step” inside-outside contrast method, the dislocation loops are identified as an interstitial type. The influcing factors for the “one-step” method are discussed and the importance of consistent indexing is also noted.
      通信作者: 徐驰, xuchi@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 1210050304)和国防科技工业核材料技术创新中心(批准号: ICNM-2022-YZ-02)资助的课题
      Corresponding author: Xu Chi, xuchi@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 1210050304) and the Innovation Center of Nuclear Materials for National Defense Industry, China (Grant No. ICNM-2022-YZ-02).
    [1]

    Gavila P, Riccardi B, Constans S, Jouvelot J L, Vastra I, Missirlian M, Richou M 2011 Fusion Eng. Des. 86 1652Google Scholar

    [2]

    Konings R, Pintsuk G. 2012 Comprehensive Nuclear Materials (Vol. 4) (Amsterdam: Elsevier Inc.) pp551–581

    [3]

    谭晓月 2018 博士学位论文(合肥: 合肥工业大学)

    Tan X Y 2018 Ph. D. Dissertation (Hefei: Hefei University of Technology) (in Chinese)

    [4]

    易晓鸥, 韩文妥, 刘平平, Francesco F, 詹倩, 万发荣 2021 金属学报 57 15

    Yi X O, Han W T, Liu P P, Francesco F, Zhan Q, Wan F R 2021 Acta Metall. Sin. 57 15

    [5]

    Yi X, Jenkins M L, Hattar K, Edmondson P, Roberts S 2015 Acta Mater. 92 163Google Scholar

    [6]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S 2016 Acta Mater. 112 105Google Scholar

    [7]

    Ran G, Huang S, Huang Z, Yan Q, Xu J, Li N, Wang L 2014 J. Nucl. Mater. 455 320Google Scholar

    [8]

    丁孝禹, 罗来马, 黄丽枚, 罗广南, 李萍, 吴玉程 2015 稀有金属 39 9

    Ding X Y, Luo L M, Huang L M, Luo G N, Li P, Wu Y C 2015 Chin. J. Rare Met. 39 9

    [9]

    吴玉程, 林锦山, 罗来马, 昝祥, 朱晓勇, 陈俊凌 2017 机械工程学报 53 25

    Wu Y C, Lin J S, Luo L M, Ji X, Zhu X Y, Chen J L 2017 J. Mech. Eng. 53 25

    [10]

    Xu H, Stoller R E, Osetsky, Terentyev D 2013 Phys. Rev. Lett. 110 265503Google Scholar

    [11]

    Ding Y F, Li Y P, Liu X Y, Ran G, Huang X, Han Q, Chen Y, Huang J, Zhou Z 2021 Tungsten 3 14

    [12]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L, Wirth B 2016 J. Nucl. Mater. 470 278Google Scholar

    [13]

    Ferroni F, Yi X, Arakawa K, Fitzgerald S, Edmondson P, Roberts S 2015 Acta Mater. 90 380Google Scholar

    [14]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社)

    Wan F R 1993 Irradiation Damage on Metal Materials (Beijing: Science Publisher) (in Chinese)

    [15]

    Du Y, Cui L, Han W, Wan F 2019 Acta Metall. Sin. 32 566Google Scholar

    [16]

    Li R, Xue L, Watanabe H, Yi X, Han W, Liu P, Zhan Q, Wan F 2022 Mater. Charact. 185 111755Google Scholar

    [17]

    李然然 2022 博士学位论文 (北京: 北京科技大学)

    Li R R 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

    [18]

    黄依娜, 万发荣, 焦志杰 2011 物理学报 60 036802Google Scholar

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802Google Scholar

    [19]

    Williams D B, Carter C B 1996 Transmission Electron Microscopy: A Textbook for Materials Science (New York: Plenum Press)

    [20]

    Jenkins M L, Kirk M A 2001 Characterization of Radiation Damage by Transmission Electron Microscopy (Bristol and Philadelphia: Institute of Physics Publishing) p74

    [21]

    Loretto M H, Smallman R E 1975 Defect Analysis in Electron Microscopy (London: Chapman and Hall Ltd.) p77

    [22]

    Stoller R E, Toloczko M B, Was G S, Certain A, Dwaraknath S, Garner F 2013 Nucl. Instrum. Meth. Phys. Res. , Sect. B 310 75Google Scholar

    [23]

    吴杏芳, 柳得橹 1998 电子显微分析实用方法 (北京: 冶金工业出版社) 第103页

    Wu X F, Liu D L 1998 Practical Methods for Electron Microscopy (Beijing: Metallurgical Industry Press) p103 (in Chinese)

    [24]

    Was G S 2017 Fundamentals of Radiation Materials Science: Metals and Alloys (Second edition) (New York: Springer Science+Business Media) p301

    [25]

    Marian J, Wirth B D, Perlado J M 2002 Phys. Rev. Lett. 88 255507Google Scholar

    [26]

    Johnson R A 1964 Phys. Rev. 134.5A 1329

    [27]

    Wirth B D, Odette G R, Maroudas D, Lucas G E 2000 J. Nucl. Mater. 276 33Google Scholar

    [28]

    Osetsky Y N, Serra A, Singh B N, Gobulov S I 2000 Philos. Mag. A 80 2131Google Scholar

    [29]

    Masters B C 1965 Philos. Mag. 11 881Google Scholar

    [30]

    Jiang S, Zhou F, Zhang G, Zhou F, Zhang G, Yi X, Yu C, Wang X, Rao W 2021 Tungsten 3 11

    [31]

    杜玉峰, 崔丽娟, 万发荣 2019 工程科学学报 41 13

    Du Y F, Cui L J, Wan F R 2019 Chin. J. Eng. 41 13

    [32]

    Matsui T, Muto S, Tanabe T 2000 J. Nucl. Mater. 283 1139

    [33]

    Nagata S, Takahiro K, Horiike S, Yamaguchi S 1999 J. Nucl. Mater. 266 1151

    [34]

    Keys L K, Moteff J 1970 J. Nucl. Mater. 34 260Google Scholar

    [35]

    Bowkett K M, Ralph B 1969 Proc. Roy. Soc. A 312 51

    [36]

    Iwakiri H, Morishita K, Yoshida N 2002 J. Nucl. Mater. 307-311 135

    [37]

    余永宁 2012 材料科学基础 (第2版) (北京: 高等教育出版社) 第352页

    Yu Y N 2012 Fundamentals of Materials Science (Ver. 2) (Beijing: Higher Education Press) p352 (in Chinese)

    [38]

    Hull D, Bacon D J 2011 Introduction to Dislocations (5th Ed.) (Amsterdam: Elsevier Inc.) p15

  • 图 1  SRIM 2013 软件模拟58 keV, 1× 1017 cm–2 D+ 辐照纯钨金属中的辐照剂量(单位: dpa)以及注入D+随深度分布图. SRIM计算使用K-P模式, D原子量为2.014 amu, W的移位域能为90 eV [22]

    Fig. 1.  The irradiation dose and D+ depth distributions for 58 keV, 1× 1017 cm–2 D+ irradiation of pure tungsten as calculated by SRIM 2013 software. The calculation is performed in the K-P quick calculation mode, with the atomic weight of D set as 2.014 amu and the displacement threshold energy for W set as 90 eV [22].

    图 2  (a) 400 ℃ D+辐照后钨中某一区域的辐照缺陷的明场像观; (b) 该区域的g($ 10\bar 1 $)双束衍射条件下的CBED图(为便于观察将衬度反转), 用于计算图(a)中区域的样品厚度; (c) 离子辐照后900 ℃/1 h 退火后的位错环明场像观察; (d) 明场像的衍射条件图, g = ($ \bar 110 $); (e), (f) 欠焦和过焦条件下, 离子辐照退火后在样品薄区观察到的空洞缺陷

    Fig. 2.  (a) TEM bright-field (BF) imaging of an area in the 400 ℃ D+ irradiated sample; (b) a CBED pattern obtained under g($ 10\bar 1 $) vector (contrast inverted for observation convenience), which is used for calculation of the specimen thickness of the area in Figure (a); (c) BF imaging of the dislocation loops in the irradiated and 900 ℃/1 h annealed specimen; (d) diffraction pattern showing the diffraction condition of Figure (c), $ g =(\bar 110) $; (e), (f) void structures observed in the irradiated and annealed specimen in underfocus and overfocus conditions, respectively.

    图 3  纯钨金属400 ℃, 58 keV D+ 辐照(Irr.)以及辐照后900 ℃/1 h退火(Irr.+ann.)后位错环尺寸分布直方图

    Fig. 3.  Histograms showing the loop size distributions in the 400 ℃, 58 keV D+ irradiated (Irr.) and the irradiated and 900 ℃/1 h annealed (Irr.+ann.) samples, respectively.

    图 4  (a)—(f) 纯钨试样经400 ℃、 58 keV、 1017 cm–2 D+ 注入后900 ℃退火1 h得到的位错环结构在不同g矢量明场观察结果; (g)—(k) 各明场像衍射条件的对应衍射图案

    Fig. 4.  (a)–(f) BF characterizations of the dislocation loops under different diffraction conditions in the 400 ℃, 58 keV, 1017 cm–2 D+ irradiated and 900 ℃/1 h annealed tungsten sample; (g)–(k) diffraction patterns showing the corresponding diffraction conditions for the BF images.

    图 5  纯钨试样经过离子辐照并退火后的位错环形貌, 分别在[001]晶带轴的 (a) g(200) 和 (b) g(020) 衍射条件下进行明场像观察. 图中用数字标记了18个典型位错环

    Fig. 5.  Morphology of dislocation loops in the irradiated and annealed tungsten sample observed in BF images taken under (a) g(200) and (b) g(020) vectors of the [001] zone axis, respectively. A total of 18 typical loops are marked with numbers correspondingly.

    图 6  离子辐照后退火的纯钨试样中同一视场在不同衍射矢量下的明场像观察. 选择[001], [111]和[011]三个晶带轴下的多个± g矢量, 并确保各g矢量的偏移矢量sg > 0. 选择了三个位错环A, B, C并对其在不同衍射条件下的inside-outside衬度进行统计

    Fig. 6.  BF images showing the dislocation loops in the same area of the irradiated and annealed tungsten sample. Multiple ±g vectors are selected in the [001], [111] and [011] zone axis, and the deviation vector sg is set to sg > 0 for these imaging conditions. Three typical loops (A, B, C) are tracked with respect to their inside-outside contrasts under different imaging conditions.

    图 7  按照FS-RH法定义的柏氏矢量 (a) 先在缺陷晶体做闭合回路; (b) 先在完整晶体做闭合回路. 图中刃位错核心处的 “•”符号代表位错线的正方向为从纸外进入纸内的方向

    Fig. 7.  The definition of Burger’s vector following the FS–RH convention: (a) First drawing the closed circuit in defected crystal; (b) first drawing the closed circuit in the perfect crystal. The “•” sign in the edge dislocation core means that the positive direction of the dislocation line is going into the paper.

    表 1  图4中的位错环显衬消衬情况总结. “√”表示位错环未消衬, “×”表示位错环消衬

    Table 1.  The contrast visibility conditions for the dislocation loops observed in Fig. 4. ‘√’ means the loop is visible and ‘×’ means the loop show contrast extinction.

    $ \boldsymbol z = [01\bar 1] $$ \boldsymbol z = [\bar 111] $z = [001]
    $ \boldsymbol g(21\bar 1) $$ \boldsymbol g(\bar 1\bar 10) $$ \boldsymbol g(0\bar 11) $g(101)g(110)$ \boldsymbol g(0\bar 20) $
    Loop A××××
    Loop B××
    Loop C××
    下载: 导出CSV

    表 2  图6中标号的位错环(A, B, C)在各个衍射矢量下的inside-outside衬度情况. I-inside衬度; O-outside衬度; ×-消衬; √-不消衬, 但inside-outside衬度不明显

    Table 2.  The inside-outside contrasts of the selected loops (A, B, C) in Fig. 6. Meanings of the different signs: I-inside contrast; O-outside contrast; ×-contrast extinction; √-visible, but with uncertain inside-outside contrasts.

    z, gz = [001], $ \boldsymbol B = [00\bar 1] $z = [111], $ \boldsymbol B = [\bar 1\bar 1\bar 1] $z = [011], $\boldsymbol B = [0\bar 1\bar 1]$
    $ 1\bar 10 $$ \bar 110 $$ 020 $$ 0\bar 20 $$ 200 $$ \bar 200 $$ 110 $$ \bar 1\bar 10 $$ 1\bar 21 $$ \bar12\bar1 $$ 2\bar1\bar1 $$ \bar211 $$ 0\bar11 $$ 01\bar1 $$ \bar1\bar12 $$ 11\bar2 $$ 21\bar1 $$ \bar2\bar11 $
    Loop AIO××IOIO××OIIO
    Loop BIOIO××IOIO××OIIO
    Loop CIOOIIO××IOIO××OIIO
    下载: 导出CSV

    表 3  影响位错环性质判定的各因素的影响效果列表. (g · b)s与inside-outside衬度的关系参照[20]. 各符号意义为: I-inside衬度; O-outside 衬度; V-loop-空位型位错环; I-loop-间隙型位错环; n的朝向是相对电子束方向B, 后者定义为向下

    Table 3.  Factors affecting the identification of interstitial or vacancy character of dislocation loops and list of effects. The relations between ($ \boldsymbol g \cdot \boldsymbol b $)s and the inside-outside contrasts is following [20]. Meanings of different signs: I-inside contrast; O-outside contrast; V-loop: vacancy loop; I-loop - interstitial loop; the direction of n is respective of the electron beam direction B which is pointing downwards.

    b定义方式先在缺陷处画闭合回路先在完整晶体画闭合回路
    n 定义n朝上n朝下n朝上n朝下
    (g · b)s > 0OIIO
    (g · b)s < 0IOOI
    b · n > 0I-loopI-loopV-loopV-loop
    b · n < 0V-loopV-loopI-loopI-loop
    b · B > 0V-loopI-loopI-loopV-loop
    b · B < 0I-loopV-loopV-loopI-loop
    下载: 导出CSV
  • [1]

    Gavila P, Riccardi B, Constans S, Jouvelot J L, Vastra I, Missirlian M, Richou M 2011 Fusion Eng. Des. 86 1652Google Scholar

    [2]

    Konings R, Pintsuk G. 2012 Comprehensive Nuclear Materials (Vol. 4) (Amsterdam: Elsevier Inc.) pp551–581

    [3]

    谭晓月 2018 博士学位论文(合肥: 合肥工业大学)

    Tan X Y 2018 Ph. D. Dissertation (Hefei: Hefei University of Technology) (in Chinese)

    [4]

    易晓鸥, 韩文妥, 刘平平, Francesco F, 詹倩, 万发荣 2021 金属学报 57 15

    Yi X O, Han W T, Liu P P, Francesco F, Zhan Q, Wan F R 2021 Acta Metall. Sin. 57 15

    [5]

    Yi X, Jenkins M L, Hattar K, Edmondson P, Roberts S 2015 Acta Mater. 92 163Google Scholar

    [6]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S 2016 Acta Mater. 112 105Google Scholar

    [7]

    Ran G, Huang S, Huang Z, Yan Q, Xu J, Li N, Wang L 2014 J. Nucl. Mater. 455 320Google Scholar

    [8]

    丁孝禹, 罗来马, 黄丽枚, 罗广南, 李萍, 吴玉程 2015 稀有金属 39 9

    Ding X Y, Luo L M, Huang L M, Luo G N, Li P, Wu Y C 2015 Chin. J. Rare Met. 39 9

    [9]

    吴玉程, 林锦山, 罗来马, 昝祥, 朱晓勇, 陈俊凌 2017 机械工程学报 53 25

    Wu Y C, Lin J S, Luo L M, Ji X, Zhu X Y, Chen J L 2017 J. Mech. Eng. 53 25

    [10]

    Xu H, Stoller R E, Osetsky, Terentyev D 2013 Phys. Rev. Lett. 110 265503Google Scholar

    [11]

    Ding Y F, Li Y P, Liu X Y, Ran G, Huang X, Han Q, Chen Y, Huang J, Zhou Z 2021 Tungsten 3 14

    [12]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L, Wirth B 2016 J. Nucl. Mater. 470 278Google Scholar

    [13]

    Ferroni F, Yi X, Arakawa K, Fitzgerald S, Edmondson P, Roberts S 2015 Acta Mater. 90 380Google Scholar

    [14]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社)

    Wan F R 1993 Irradiation Damage on Metal Materials (Beijing: Science Publisher) (in Chinese)

    [15]

    Du Y, Cui L, Han W, Wan F 2019 Acta Metall. Sin. 32 566Google Scholar

    [16]

    Li R, Xue L, Watanabe H, Yi X, Han W, Liu P, Zhan Q, Wan F 2022 Mater. Charact. 185 111755Google Scholar

    [17]

    李然然 2022 博士学位论文 (北京: 北京科技大学)

    Li R R 2022 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

    [18]

    黄依娜, 万发荣, 焦志杰 2011 物理学报 60 036802Google Scholar

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802Google Scholar

    [19]

    Williams D B, Carter C B 1996 Transmission Electron Microscopy: A Textbook for Materials Science (New York: Plenum Press)

    [20]

    Jenkins M L, Kirk M A 2001 Characterization of Radiation Damage by Transmission Electron Microscopy (Bristol and Philadelphia: Institute of Physics Publishing) p74

    [21]

    Loretto M H, Smallman R E 1975 Defect Analysis in Electron Microscopy (London: Chapman and Hall Ltd.) p77

    [22]

    Stoller R E, Toloczko M B, Was G S, Certain A, Dwaraknath S, Garner F 2013 Nucl. Instrum. Meth. Phys. Res. , Sect. B 310 75Google Scholar

    [23]

    吴杏芳, 柳得橹 1998 电子显微分析实用方法 (北京: 冶金工业出版社) 第103页

    Wu X F, Liu D L 1998 Practical Methods for Electron Microscopy (Beijing: Metallurgical Industry Press) p103 (in Chinese)

    [24]

    Was G S 2017 Fundamentals of Radiation Materials Science: Metals and Alloys (Second edition) (New York: Springer Science+Business Media) p301

    [25]

    Marian J, Wirth B D, Perlado J M 2002 Phys. Rev. Lett. 88 255507Google Scholar

    [26]

    Johnson R A 1964 Phys. Rev. 134.5A 1329

    [27]

    Wirth B D, Odette G R, Maroudas D, Lucas G E 2000 J. Nucl. Mater. 276 33Google Scholar

    [28]

    Osetsky Y N, Serra A, Singh B N, Gobulov S I 2000 Philos. Mag. A 80 2131Google Scholar

    [29]

    Masters B C 1965 Philos. Mag. 11 881Google Scholar

    [30]

    Jiang S, Zhou F, Zhang G, Zhou F, Zhang G, Yi X, Yu C, Wang X, Rao W 2021 Tungsten 3 11

    [31]

    杜玉峰, 崔丽娟, 万发荣 2019 工程科学学报 41 13

    Du Y F, Cui L J, Wan F R 2019 Chin. J. Eng. 41 13

    [32]

    Matsui T, Muto S, Tanabe T 2000 J. Nucl. Mater. 283 1139

    [33]

    Nagata S, Takahiro K, Horiike S, Yamaguchi S 1999 J. Nucl. Mater. 266 1151

    [34]

    Keys L K, Moteff J 1970 J. Nucl. Mater. 34 260Google Scholar

    [35]

    Bowkett K M, Ralph B 1969 Proc. Roy. Soc. A 312 51

    [36]

    Iwakiri H, Morishita K, Yoshida N 2002 J. Nucl. Mater. 307-311 135

    [37]

    余永宁 2012 材料科学基础 (第2版) (北京: 高等教育出版社) 第352页

    Yu Y N 2012 Fundamentals of Materials Science (Ver. 2) (Beijing: Higher Education Press) p352 (in Chinese)

    [38]

    Hull D, Bacon D J 2011 Introduction to Dislocations (5th Ed.) (Amsterdam: Elsevier Inc.) p15

  • [1] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [2] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟. 物理学报, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [3] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [4] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [5] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[${{11}}\bar {{1}}$]位错环相互作用行为. 物理学报, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [7] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [8] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [9] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [10] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [11] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [12] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [13] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [14] 崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣. 氢离子辐照纯钒中形成的位错环. 物理学报, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [15] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [16] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [17] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [18] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [19] 卢果, 方步青, 张广财, 许爱国. 有限温度下位错环的脱体现象. 物理学报, 2009, 58(11): 7934-7946. doi: 10.7498/aps.58.7934
    [20] 覃怀莉, 薛建明, 赖江南, 王建勇, 苗 琦, 张伟明, 马 磊, 颜 莎, 赵渭江, 顾红雅, 王宇钢. 拟南芥胚的不同区域对MeV离子辐照的响应. 物理学报, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
计量
  • 文章访问数:  2843
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-05
  • 修回日期:  2022-12-15
  • 上网日期:  2023-01-05
  • 刊出日期:  2023-03-05

/

返回文章
返回