-
本文提出了一个新型的SOI埋层结构SOANN (silicon on aluminum nitride with nothing),用AlN代替传统的SiO2材料,并在SOI埋氧化层中引入空洞散热通道. 分析了新结构SOI器件的自加热效应.研究结果表明:用AlN做为SOI埋氧化层的材料, 降低了晶格温度,有效抑制了自加热效应.埋氧化层中的空洞,可以进一步提供散热通道, 使埋氧化层的介电常数下降,减小了电力线从漏端通过埋氧到源端的耦合, 有效抑制了漏致势垒降低DIBL(drain Induced barrier lowering)效应.因此,本文提出的新型SOANN结构可以提高SOI器件的整体性能,具有优良的可靠性.In this paper, we present a new silicon-on-insulator (SOI) buried oxide structure, i.e., silicon on aluminum nitride with nothing (SOANN). In the novel structure, the traditional SiO2 is replaced by A1N, and gas cavity is constructed in the SOI buried oxide. The self-heating effect of novel SOI device is analyzed. The result shows that using A1N as a buried oxide, the temperature of lattice and the effectively restrained self-heating effect can decrease. In addition, the gas cavity in the buried oxide can provide a heat emission passage and reduce the dielectric constant. The coupling effect of electric field lines from drain to source is weakened, and the drain induced barrier lowering effects is effectively restrained. Therefore, this new SOANN structure can improve the performance of the SOI devices, and provide high reliability as well.
-
Keywords:
- self-heating effects /
- DIBL /
- AlN /
- gas cavity
[1] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 物理学报 59 8131]
[2] Plouchart J O 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. 329
[3] Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107 (in Chinese) [顾江, 王强, 鲁宏 2011 物理学报 60 077107]
[4] Song Z R, Hu Y H 2002 Appl. Phys. Lett. 80 743
[5] Roig J, Flores D, Vellvehi M 2002 Microelectron. Reliab. 42 61
[6] Sun Z M, Liu L T, Li Z J 1998 5th International Conference on Solid-State and Integrated Circuit Technology 572
[7] Tenbroek B M, Lee M S L, Redman-White W 1998 IEEE J Solid-State Circuits 33 1037
[8] Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C, Hao Y 2011 Acta Phys. Sin. 60 1173057 (in Chinese) [张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃 2011 物理学报 60 1173057]
[9] Dessis user guide 2004 ISE TCAD release 10.0. Integrated Systems Engineering Zurich, Switzerland
[10] Cheng Y, Fjeldly T A 1996 IEEE Trans. Electron Devices 43 1291
[11] Hu M H, Jang S L 1998 IEEE Trans. Electron Devices 45 797
[12] Cheng M C, Yu F, Habitz P 2004 Solid-State Electronics 48 415
[13] MeDaid L J, Hall S, Mellor P H, Eeeleston W 1989 Proceeding of ESSDERC 885
[14] Barlow P R, Davis R G, Lazarus M J 1986 IEEE Proceeding of ESSDERC 177
[15] Xiong W, Ramkumar K, Jang S J 2002 Proc. IEEE Int. SOI Conf. 23
-
[1] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 物理学报 59 8131]
[2] Plouchart J O 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. 329
[3] Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107 (in Chinese) [顾江, 王强, 鲁宏 2011 物理学报 60 077107]
[4] Song Z R, Hu Y H 2002 Appl. Phys. Lett. 80 743
[5] Roig J, Flores D, Vellvehi M 2002 Microelectron. Reliab. 42 61
[6] Sun Z M, Liu L T, Li Z J 1998 5th International Conference on Solid-State and Integrated Circuit Technology 572
[7] Tenbroek B M, Lee M S L, Redman-White W 1998 IEEE J Solid-State Circuits 33 1037
[8] Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C, Hao Y 2011 Acta Phys. Sin. 60 1173057 (in Chinese) [张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃 2011 物理学报 60 1173057]
[9] Dessis user guide 2004 ISE TCAD release 10.0. Integrated Systems Engineering Zurich, Switzerland
[10] Cheng Y, Fjeldly T A 1996 IEEE Trans. Electron Devices 43 1291
[11] Hu M H, Jang S L 1998 IEEE Trans. Electron Devices 45 797
[12] Cheng M C, Yu F, Habitz P 2004 Solid-State Electronics 48 415
[13] MeDaid L J, Hall S, Mellor P H, Eeeleston W 1989 Proceeding of ESSDERC 885
[14] Barlow P R, Davis R G, Lazarus M J 1986 IEEE Proceeding of ESSDERC 177
[15] Xiong W, Ramkumar K, Jang S J 2002 Proc. IEEE Int. SOI Conf. 23
计量
- 文章访问数: 7671
- PDF下载量: 1439
- 被引次数: 0