-
近场热光伏器件是一种能够将热辐射能直接高效转换为电能的新型能量转换技术,在废热回收、太阳能利用及微纳能源系统等领域具有广阔的应用前景.为进一步提升近场热光伏系统的能量转换效率,本文提出了一种基于hBN/BP/InSb异质结构的近场热光伏器件,其中hBN和BP的极化激元杂化特性为实现高效光谱匹配提供了新的途径.该系统采用hBN作为热发射器、InSb作为光伏电池,BP层引入各向异性表面等离极化激元,与hBN中的双曲声子极化激元发生杂化,从而实现与InSb带间跃迁的高效光谱匹配.本文系统比较了InSb-hBN、InSb/BP-hBN、InSb-BP/hBN及InSb/BP-BP/hBN四种构型的光伏性能,分析了真空间隙对输出功率密度与能量转换效率的影响.结果表明,在真空间隙为10 nm、发射器温度为900 K时,InSb/BP-hBN结构表现出最优性能,其输出功率密度可达1.2×106 W/m2,能量转换效率约为卡诺极限的60%,均较之前研究的InSb-BP/CaCO3结构显著提升.进一步的理论分析表明,BP在系统中的空间位置是影响近场热辐射的关键因素:其位于热发射器侧或光伏电池侧的不同配置,会显著改变光子隧穿概率,从而导致系统输出功率与转换效率的差异化表现.此外,研究还揭示了BP自由电子浓度对系统性能的调控机制.当自由电子浓度从5×1012 cm-2增加至5×1013 cm-2时,表面等离极化激元与双曲声子极化激元的杂化效应发生显著变化,导致带隙频率上下区域的辐射能量呈现差异化增强:带隙以上区域的辐射增强提升了电流密度,而带隙以下区域的增强则引入寄生损耗,两者共同影响热光伏系统的性能.本研究系统揭示了极化激元杂化增强NFTPV性能的物理机制,为高性能近场热光伏器件的设计提供了新的思路与理论依据.Near-field thermophotovoltaic (NFTPV) devices enable direct and efficient conversion of thermal radiation into electricity, showing great potential in waste heat recovery and nanoscale energy systems. To enhance conversion efficiency, we propose an NFTPV system based on an hBN/BP/InSb heterostructure, where hexagonal boron nitride (hBN) serves as the emitter, black phosphorus (BP) acts as a tunable interlayer, and indium antimonide (InSb) functions as the photovoltaic cell. The anisotropic surface plasmon polaritons (SPPs) in BP strongly couple with the hyperbolic phonon polaritons (HPPs) in hBN, thereby forming hybrid surface modes that enhance photon tunneling and achieve effective spectral matching with the interband transition of InSb, leading to a substantial increase in near-field radiative heat transfer. Based on fluctuational electrodynamics and detailed balance analysis combined with the transfer matrix method, we systematically evaluated four structural configurations—InSb-hBN, InSb/BP-hBN, InSb-BP/hBN, and InSb/BP-BP/hBN—and examined the influence of vacuum gap distance and BP carrier density on device performance. Among them, the InSb/BP-hBN configuration exhibits the highest performance, with an output power density of 1.2×106 W/m2 and a conversion efficiency approaching 60% of the Carnot limit at a 10 nm gap and 900 K emitter temperature. Furthermore, theoretical analysis reveals that the spatial position of BP critically determines the photon tunneling probability, thereby governing variations in output power and efficiency among different configurations. As the free electron concentration increases from 5×1012 cm-2 to 5×1013 cm-2, the hybridization between SPPs and HPPs changes markedly, leading to distinct enhancement behaviors of radiative energy above and below the InSb bandgap. These findings clarify the mechanism by which SPPs-HPPs hybridization enhances NFTPV performance, offering new insights and design strategies for next-generation high-efficiency thermophotovoltaic devices.
-
Keywords:
- hexagonal boron nitride /
- black phosphorus /
- waste heat recovery /
- near-field thermophotovoltaic
-
[1] . Lu H Y, Price L, Zhang Q 2016 Appl. Energy 161 497
[2] . Yang Z Y, Yang X L, Liu Z Y, Xia J J 2025 Appl. Therm. Eng. 266 125594
[3] . Zhou Z G, Chen Q S, Bermel P 2015 Energy Convers. Manage. 97 63
[4] . Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1
[5] . Song J M, Choi M W, Yang Z M, Lee J C, Lee B J 2022 Appl. Phys. Lett. 121 163503
[6] . Lucchesi C, Cakiroglu D, Perez J-P, Taliercio T, Tournié E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524
[7] . LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287
[8] . Chen K F, Santhanam P, Fan S H 2015 Appl. Phys. Lett. 107 091106
[9] . Zhao B, Chen K F, Buddhiraju S, Bhatt G, Lipson M, Fan S H 2017 Nano Energy 41 344
[10] . Amy C, Seyf H R, Steiner M A, Friedman D J, Henry A 2019 Energy Environ. Sci. 12 334
[11] . Liao T J, Cai L, Zhao Y R, Chen J C 2016 J. Power Sources 306 666
[12] . Bierman D M, Lenert A, Chan W R, Bhatia B, Celanović I, Soljačić M, Wang E N 2016 Nat. Energy 1 16086
[13] . Wang C H, Bian H, Fan D W, Zhang P F, Liu J C 2025 Int. J. Heat Mass Transf. 236 126375
[14] . Mao W-H, Du Y Y, Peng J B, Ren J 2025 Adv. Photonics 7 036006
[15] . Lu L, Zhang B, Ou H, Li B W, Zhou K, Song J L, Luo Z X, Cheng Q 2022 Small 18 2108032
[16] . Liu X L, Zhang Z M 2015 Acs Photonics 2 1320
[17] . Biehs S-A, Messina R, Venkataram P S, Rodriguez A W, Cuevas J C, Ben-Abdallah P 2021 Rev. Mod. Phys. 93 025009
[18] . Polder D, Van Hove M 1971 Phys. Rev. B 4 3303
[19] . Burger T, Sempere C, Roy-Layinde B, Lenert A 2020 Joule 4 1660
[20] . Song J L, Cheng Q 2016 Phys. Rev. B 94 125419
[21] . Zhou C-L, Yang S H, Huang Y, Zhang Y, Yi H-L, Antezza M, Qiu C-W 2025 Nanophotonics 14 4045
[22] . Shi K Z, Bao F L, He S L 2017 Acs Photonics 4 971
[23] . Zhang Y, Zhou C-L, Qu L, Yi H-L 2020 Appl. Phys. Lett. 116 151101
[24] . Ma Q J, Xiong Q S, Chen X, Jiang L Y, Xiang Y J 2024 Opt. Lett. 49 2701
[25] . Xu Z G, Hu Z F 2024 J. Therm. Sci. 33 1409
[26] . Wang R Q, Lu J C, Wu X H, Peng J B, Jiang J-H 2023 Phys. Rev. Appl. 19 044050
[27] . Chen F R, Xu Z G, Wang Y T 2021 Int. J. Therm. Sci. 166 106978
[28] . Du W, Yin G, Ma Y-G 2020 Acta Phys. Sin. 69 204203 (in Chinese) [杜玮, 尹格, 马云贵 2020 物理学报69 204203]
[29] . Li L, Yu K, Feng D D, Yang Z M, Zhang K H, Liu Y F, Wu X H 2023 Phys. Rev. Appl. 20 064015
[30] . Zhang K, Zhang B, Luo Z X, Song J L, Cheng Q 2025 Int. J. Heat Mass Transf. 236 126288
[31] . Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2017 Nat. Mater. 16 182
[32] . Zhang Y, Yi H-L, Tan H-P 2018 Acs Photonics 5 3739
[33] . Wang R Q, Lu J C, Jiang J-H 2019 Phys. Rev. Appl. 12 044038
[34] . Shen J D, Guo S, Liu X L, Liu B A, Wu W T, He H 2018 Appl. Therm. Eng. 144 403
[35] . Zhao B, Zhang Z M 2017 J. Heat Transfer 139 022701
[36] . Low T, Roldán R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802
[37] . Yang S-H, Zhang Y, Zhou C-L, Yi H-L 2021 Int. J. Therm. Sci. 170 107142
[38] . Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383
[39] . Feng D D, Ruan X L, Yee S K, Zhang Z M 2022 Nano Energy 103 107831
[40] . Zhang Y, Wang C-H, Yi H-L, Tan H-P 2018 J. Quant. Spectrosc. Radiat. Transfer 221 138
[41] . Wu X H, Fu C J, Zhang Z M 2019 J. Photo. Energy. 9 032702
[42] . Feng D D, Tervo E J, Yee S K, Zhang Z M 2020 Nanoscale Microscale Thermophys. Eng. 24 1
[43] . Li L, Wu X H, Liu H T, Yang Z M, Liu Y F, Yu K 2024 Int. J. Heat Mass Transf. 230 125783
计量
- 文章访问数: 21
- PDF下载量: 1
- 被引次数: 0








下载: