搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态可调谐的频域多功能可重构极化转换超表面

黄晓俊 高焕焕 何嘉豪 栾苏珍 杨河林

引用本文:
Citation:

动态可调谐的频域多功能可重构极化转换超表面

黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林

Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface

Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin
PDF
HTML
导出引用
  • 设计任意调控极化的电磁器件是一个研究热点, 其中多功能可重构电磁器件在雷达、卫星通信等领域有着广泛的应用. 本文设计了一种基于正本征负极(PIN)二极管可调谐的多功能可重构极化转换超表面, 可以实现不同频段内的线极化波转换、线极化波-圆极化波转换和全反射功能的切换, 在斜入射角小于30°时, 多功能转换器能保持高效的宽带极化转换特性. 这种转换和重构特性主要是由于结构本身的各向异性和PIN管不同状态时耦合模式的改变. 此外, 利用表面电流解释了偏振转换的物理机理, 电谐振和磁谐振的共同作用导致了偏振转换. 最后, 对该结构样品进行实验验证, 其结果与仿真吻合较好. 该器件在极化调控、频率控制、智能反射面设计和天线设计等方面具有潜在的应用价值.
    The design of electromagnetic device with arbitrary polarization manipulation is the hot spot of the current research. Multifunctional reconfigurable electromagnetic devices have been put into wide applications in radar, satellite communication and other fields. In this work designed is a multifunctional reconfigurable polarization conversion metasurface based on two PIN diodes, which can realize linear polarization conversion, linear-circular polarization conversion and total reflection switching in the different frequency bands, and the multi-function converter can still maintain the high-efficient broadband conversion characteristics when the oblique incidence angle is less than 30 degrees. The polarization conversion and reconfigurability are mainly due to the anisotropy of the structure and the changes of coupling mode in different states of PIN diodes. In addition, the physical mechanism of polarization conversion is explained by surface current. The combined action of electric resonance and magnetic resonance results in polarization conversion. Finally, the experimental results of the sample are in good agreement with the simulation results. The device has the potential application values in polarization manipulation, frequency control, intelligent reflecting surface design, and antenna design and so on.
      通信作者: 黄晓俊, hxj@xust.edu.cn ; 杨河林, emyang@mail.ccnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974119)和陕西省自然科学基金(批准号: 2021JM-395)资助的课题.
      Corresponding author: Huang Xiao-Jun, hxj@xust.edu.cn ; Yang He-Lin, emyang@mail.ccnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974119), Natural Science Foundation of Shaanxi Province (Grant No. 2021JM-395).
    [1]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [2]

    Huang X J, Yang H L, Zhang D H, Luo Y 2019 IEEE Trans. Antennas Propag. 67 4636Google Scholar

    [3]

    Li Y, Cao Q, Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314Google Scholar

    [4]

    Nama L, Nilotpal, Bhattacharyya S, Jain P K 2021 IEEE Antennas Propag. Mag. 63 100Google Scholar

    [5]

    Zheng Q, Guo C, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [6]

    李海鹏, 吴潇, 丁海洋, 辛可为, 王光明, 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2021 物理学报 70 027803Google Scholar

    Li H P, Wu X, Ding H Y, Xin K W, Wang G M, Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2021 Acta Phys. Sin. 70 027803Google Scholar

    [7]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 物理学报 68 117081Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117081Google Scholar

    [8]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [9]

    Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T, Wu J 2018 J. Appl. Phys. 123 225106Google Scholar

    [10]

    Negm A, Bakr M, Howlader M, Ali S 2021 Smart Mater. Struct. 30 075011Google Scholar

    [11]

    高喜, 唐李光 2021 物理学报 70 038101Google Scholar

    Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar

    [12]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 物理学报 70 188701Google Scholar

    Li G Q, Shi H N, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [13]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 物理学报 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [14]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178101Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178101Google Scholar

    [15]

    Castaldi G, Zhang L, Moccia M, Hathaway A Y, Tang W X, Cui T J, Galdi V 2021 Adv. Funct. Mater. 31 2007620Google Scholar

    [16]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [17]

    Sun W J, Yang W W, Guo L, Qin W, Chen J X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1088Google Scholar

    [18]

    Xia Z X, Leung K W, Yang N, Lu K 2021 IEEE Trans. Antennas Propag. 69 2031Google Scholar

    [19]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 168101Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 168101Google Scholar

    [20]

    Wang H, Sui S, Li Y, Chen H, Wang J, Zhang J, Qu S 2020 Smart Mater. Struct. 29 015029Google Scholar

    [21]

    Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar

    [22]

    He J H, Wang S Q, Li X W, Fan J D, Guo L Y, Guo L, Huang X J 2021 Phys. Scr. 96 125846Google Scholar

    [23]

    Liu G Y, Li L, Han J Q, Liu H X, Gao X H, Shi Y, Cui T J 2020 ACS Appl. Mater. Interfaces 12 23554Google Scholar

    [24]

    Wang H L, Ma H F, Chen M, Sun S, Cui T J 2021 Adv. Funct. Mater. 31 2100275Google Scholar

    [25]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Em. Sel. Top. C 10 20

  • 图 1  单元结构示意图 (a) 立体图; (b) 主视图; (c) 侧视图

    Fig. 1.  Schematics of unit cell: (a) Solid Shape; (b) main view; (c) side view.

    图 2  等效电路 (a) 等效电路分析; (b) 等效电路模型

    Fig. 2.  Equivalent circuit: (a) Equivalent circuit analysis; (b) equivalent circuit model.

    图 3  二极管不同状态下的仿真曲线 (a) “10”-反射系数; (b) “01”-反射系数; (c) “01”-反射相位; (d) “10”-反射系数; (e) “11”-反射系数

    Fig. 3.  Simulation curve of diodes in different states: (a) “10”-reflectance; (b) “01”-reflectance; (c) “01”-reflection phase; (d) “10”- reflectance; (e) “11”- reflectance.

    图 4  二极管不同状态下的极化转换率、吸收率和轴比 (a) “10”与“01”; (b) “00”与“11”

    Fig. 4.  Polarization conversion rate, absorptance and axial ratio of diodes in different states: (a) “10” and “01”, (b) “00” and “11”.

    图 5  可重构超表面样品结构与实际测试样品 (a) 顶层结构; (b) 底部馈线; (c) 实验样品顶层; (d) 实验样品底部馈线

    Fig. 5.  Reconfigurable metasurface sample structure with actual test sample: (a) Top structure; (b) bottom feeder; (c) top layer of experimental sample; (d) bottom feeder of experimental sample.

    图 6  实验测试环境

    Fig. 6.  Experimental test environment.

    图 7  二极管不同状态下实验与仿真的性能对比 (a) “10”; (b) “01”; (c) “00”; (d) “11”

    Fig. 7.  Comparison of experimental and simulated performance of diodes in different states: (a) “10”; (b) “01”; (c) “00”; (d) “11”.

    图 8  不同二极管状态下在uv方向上的反射系数和相位差 (a) “10”; (b) “01”; (c) “00”; (d) “11”

    Fig. 8.  Reflectances and phase differences in u and v directions for different diode states: (a) “10”; (b) “01”; (c) “00”; (d) “11”.

    图 9  不同入射角对不同二极管状态下可重构极化调控性能的影响 (a) “10”; (b) “01”; (c) “00”; (d) “11”

    Fig. 9.  Effect of different incidence angles on the reconfigurable polarization modulation performance in different diode states: (a) “10”; (b) “01”; (c) “00”; (d) “11”.

    图 10  其他方位角的斜入射响应 (a) “10”状态; (b) “01”状态 (c) “00”状态; (d) “11”状态

    Fig. 10.  Oblique incident response at other azimuths: (a) “10”; (b) “01”; (c) “00”; (d) “11”.

    图 11  不同二极管状态下各极化转换功能在谐振点处的表面电流分布 (a) (b) “10”; (c) (d) “01”; (e) (f) “00”; (g) (h) “11”

    Fig. 11.  Surface current distribution of each polarization conversion function at the resonance point under different diode states: (a) (b) “10”; (c) (d) “01”; (e) (f) “00”; (g) (h) “11”.

  • [1]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [2]

    Huang X J, Yang H L, Zhang D H, Luo Y 2019 IEEE Trans. Antennas Propag. 67 4636Google Scholar

    [3]

    Li Y, Cao Q, Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314Google Scholar

    [4]

    Nama L, Nilotpal, Bhattacharyya S, Jain P K 2021 IEEE Antennas Propag. Mag. 63 100Google Scholar

    [5]

    Zheng Q, Guo C, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [6]

    李海鹏, 吴潇, 丁海洋, 辛可为, 王光明, 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2021 物理学报 70 027803Google Scholar

    Li H P, Wu X, Ding H Y, Xin K W, Wang G M, Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2021 Acta Phys. Sin. 70 027803Google Scholar

    [7]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 物理学报 68 117081Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117081Google Scholar

    [8]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [9]

    Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T, Wu J 2018 J. Appl. Phys. 123 225106Google Scholar

    [10]

    Negm A, Bakr M, Howlader M, Ali S 2021 Smart Mater. Struct. 30 075011Google Scholar

    [11]

    高喜, 唐李光 2021 物理学报 70 038101Google Scholar

    Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar

    [12]

    李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 物理学报 70 188701Google Scholar

    Li G Q, Shi H N, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar

    [13]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 物理学报 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [14]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178101Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178101Google Scholar

    [15]

    Castaldi G, Zhang L, Moccia M, Hathaway A Y, Tang W X, Cui T J, Galdi V 2021 Adv. Funct. Mater. 31 2007620Google Scholar

    [16]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [17]

    Sun W J, Yang W W, Guo L, Qin W, Chen J X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1088Google Scholar

    [18]

    Xia Z X, Leung K W, Yang N, Lu K 2021 IEEE Trans. Antennas Propag. 69 2031Google Scholar

    [19]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 168101Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 168101Google Scholar

    [20]

    Wang H, Sui S, Li Y, Chen H, Wang J, Zhang J, Qu S 2020 Smart Mater. Struct. 29 015029Google Scholar

    [21]

    Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar

    [22]

    He J H, Wang S Q, Li X W, Fan J D, Guo L Y, Guo L, Huang X J 2021 Phys. Scr. 96 125846Google Scholar

    [23]

    Liu G Y, Li L, Han J Q, Liu H X, Gao X H, Shi Y, Cui T J 2020 ACS Appl. Mater. Interfaces 12 23554Google Scholar

    [24]

    Wang H L, Ma H F, Chen M, Sun S, Cui T J 2021 Adv. Funct. Mater. 31 2100275Google Scholar

    [25]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Em. Sel. Top. C 10 20

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [3] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [4] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [5] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [6] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面. 物理学报, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [7] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [10] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [13] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [14] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [15] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [20] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
计量
  • 文章访问数:  3344
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-07-27
  • 上网日期:  2022-11-11
  • 刊出日期:  2022-11-20

/

返回文章
返回