搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金

苏少坚 张东亮 张广泽 薛春来 成步文 王启明

引用本文:
Citation:

Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金

苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明

High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy

Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming
PDF
导出引用
  • Ge1-xSnx是一种新型IV族合金材料, 在光子学和微电子学器件研制中具有重要应用前景. 本文使用低温分子束外延(MBE)法, 在Ge(001)衬底上生长高质量的Ge1-xSnx合金, 组分x分别为1.5%, 2.4%, 2.8%, 5.3%和14%, 采用高分辨X射线衍射(HR-XRD)、卢瑟福背散射谱(RBS) 和透射电子显微镜(TEM)等方法表征Ge1-xSnx合金的材料质量. 对于低Sn组分(x 5.3%)的样品, Ge1-xSnx合金的晶体质量非常好, RBS的沟道/随机产额比(min)只有5.0%, HR-XRD曲线中Ge1-xSnx衍射峰的半高全宽(FWHM)仅100'' 左右. 对于x=14%的样品, Ge1-xSnx合金的晶体质量相对差一些, FWHM=264.6''.
    As a new group-IV semiconductor alloy, Ge1-xSnx is a very promising material for applications in photonic and microelectronic devices. In this work, high-quality germanium-tin (Ge1-xSnx) alloys are grown on Ge(001) substrates by molecular beam epitaxy, with x=1.5%, 2.4%, 2.8%, 5.3%, and 14%. The Ge1-xSnx alloys are characterized by high resolution X-ray diffraction (HR-XRD), Rutherford backscattering spectra (RBS), and transmission electron micrograph (TEM). For the samples with Sn composition x 5.3%, the Ge1-xSnx alloys each exhibit a very high crystalline quality. The ratio of channel yield to random yield (min) in the RBS spectrum is only about 5%, and the full width at half maximum (FWHM) of the Ge1-xSnx peak in HR-XRD curve is 100''. For the sample with x=14%, the crystalline quality of the alloy is degraded and FWHM is 264.6''.
    • 基金项目: 国家自然科学基金 (批准号: 61036003, 61176013, 60906035, 61177038)和华侨大学科研基金 (批准号: 12BS221)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, 60906035, 61177038), and the Science Foundation of Huaqiao University (Grant No. 12BS221).
    [1]

    Soref R A, Friedman L 1993 Superlattice Microst 14 189

    [2]

    Kouvetakis J, Menendez J, Chizmeshya A V G 2006 Annu. Rev. Mater. Res. 36 497

    [3]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [4]

    Sun G, Soref R A, Cheng H H 2010 Opt. Express 18 19957

    [5]

    Roucka R, Mathews J, Beeler R T, Toll J, Kouvetakis J, Menendez J 2011 Appl. Phys. Lett. 98 061109

    [6]

    Mathews J, Beeler R T, Toll J, Xu C, Roucka R, Kouvetakis J, Menendez J 2011 Appl. Phys. Lett. 97 221912

    [7]

    Su S, Cheng B, Xue C, Wang W, Cao Q, Xue H, Hu W, Zhang G, Zuo Y, Wang Q 2011 Opt. Express 19 6400

    [8]

    Sun G, Soref R A, Cheng H H 2010 J. Appl. Phys. 108 033107

    [9]

    Sau J D, Cohen M L 2007 Phys. Rev. B 75 045208

    [10]

    Nakatsuka O, Tsutsui N, Shimura Y, Takeuchi S, Sakai A, Zaima S 2010 Jpn. J. Appl. Phys. 49 04DA10

    [11]

    Han G, Su S, Zhan C L, Zhou Q, Yang Y, Wang L, Guo P, Wang W, Wong C P, Shen Z X, Cheng B, Yeo Y -C 2011 IEEE International Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 p402

    [12]

    Han G, Su S, Wang L, Wang W, Gong X, Yang Y, Ivana, Guo P, Guo C, Zhang G, Pan J, Zhang Z, Xue C, Cheng B, Yeo Y -C 2012 Symposia on VLSI Technology, Hilton Havaiian Village, Honolulu, Hawaii, June 12-14, 2012 p97

    [13]

    Su S, Wang W, Cheng B, Zhang G, Hu W, Xue C, Zuo Y, Wang Q 2011 J. Cryst. Growth 317 43

    [14]

    Su S J, Wang W, Zhang G Z, Hu W X, Bai A Q, Xue C L, Zuo Y H, Cheng B W, Wang Q M 2011 Acta Phys. Sin. 60 028101 (in Chinese) [苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明 2011 物理学报 60 028101]

    [15]

    Bratland K A, Foo Y L, Spila T, Seo H S, Haasch R T, Desjardins P, Greene J E 2005 J. Appl. Phys. 97 044904

    [16]

    Kasper E, Werner J, Oehme M, Escoubas S, Burle N, Schulze J 2012 Thin Solid Films 520 3195

    [17]

    Lin H, Chen R, Huo Y, Kamins T I, Harris J S 2012 Thin Solid Films 520 3927

    [18]

    Gurdal O, Desjardins P, Carlsson J R A, Taylor N, Radamson H H, Sundgren J E, Greene J E 1998 J. Appl. Phys. 83 162

    [19]

    Bauer M, Taraci J, Tolle J, Chizmeshya A V G, Zollner S, Smith D J, Menendez J, Hu C W, Kouvetakis J 2002 Appl. Phys. Lett. 81 2992

    [20]

    Vincent B, Gencarelli F, Bender H, Merckling C, Douhard B, Petersen D H, Hansen O, Henrichsen H H, Meersschaut J, Vandervorst W, Heyns M, Loo R, Caymax M 2011 Appl. Phys. Lett. 99 152103

    [21]

    Su S J, Cheng B W, Xue C L, Zhang D L, Zhang G Z, Wang Q M 2012 Acta Phys. Sin. 61 176104 (in Chinese) [苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明 2012 物理学报 61 176104]

    [22]

    Su S, Wang W, Cheng B, Hu W, Zhang G, Xue C, Zuo Y, Wang Q 2011 Solid State Commun. 151 647

  • [1]

    Soref R A, Friedman L 1993 Superlattice Microst 14 189

    [2]

    Kouvetakis J, Menendez J, Chizmeshya A V G 2006 Annu. Rev. Mater. Res. 36 497

    [3]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [4]

    Sun G, Soref R A, Cheng H H 2010 Opt. Express 18 19957

    [5]

    Roucka R, Mathews J, Beeler R T, Toll J, Kouvetakis J, Menendez J 2011 Appl. Phys. Lett. 98 061109

    [6]

    Mathews J, Beeler R T, Toll J, Xu C, Roucka R, Kouvetakis J, Menendez J 2011 Appl. Phys. Lett. 97 221912

    [7]

    Su S, Cheng B, Xue C, Wang W, Cao Q, Xue H, Hu W, Zhang G, Zuo Y, Wang Q 2011 Opt. Express 19 6400

    [8]

    Sun G, Soref R A, Cheng H H 2010 J. Appl. Phys. 108 033107

    [9]

    Sau J D, Cohen M L 2007 Phys. Rev. B 75 045208

    [10]

    Nakatsuka O, Tsutsui N, Shimura Y, Takeuchi S, Sakai A, Zaima S 2010 Jpn. J. Appl. Phys. 49 04DA10

    [11]

    Han G, Su S, Zhan C L, Zhou Q, Yang Y, Wang L, Guo P, Wang W, Wong C P, Shen Z X, Cheng B, Yeo Y -C 2011 IEEE International Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 p402

    [12]

    Han G, Su S, Wang L, Wang W, Gong X, Yang Y, Ivana, Guo P, Guo C, Zhang G, Pan J, Zhang Z, Xue C, Cheng B, Yeo Y -C 2012 Symposia on VLSI Technology, Hilton Havaiian Village, Honolulu, Hawaii, June 12-14, 2012 p97

    [13]

    Su S, Wang W, Cheng B, Zhang G, Hu W, Xue C, Zuo Y, Wang Q 2011 J. Cryst. Growth 317 43

    [14]

    Su S J, Wang W, Zhang G Z, Hu W X, Bai A Q, Xue C L, Zuo Y H, Cheng B W, Wang Q M 2011 Acta Phys. Sin. 60 028101 (in Chinese) [苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明 2011 物理学报 60 028101]

    [15]

    Bratland K A, Foo Y L, Spila T, Seo H S, Haasch R T, Desjardins P, Greene J E 2005 J. Appl. Phys. 97 044904

    [16]

    Kasper E, Werner J, Oehme M, Escoubas S, Burle N, Schulze J 2012 Thin Solid Films 520 3195

    [17]

    Lin H, Chen R, Huo Y, Kamins T I, Harris J S 2012 Thin Solid Films 520 3927

    [18]

    Gurdal O, Desjardins P, Carlsson J R A, Taylor N, Radamson H H, Sundgren J E, Greene J E 1998 J. Appl. Phys. 83 162

    [19]

    Bauer M, Taraci J, Tolle J, Chizmeshya A V G, Zollner S, Smith D J, Menendez J, Hu C W, Kouvetakis J 2002 Appl. Phys. Lett. 81 2992

    [20]

    Vincent B, Gencarelli F, Bender H, Merckling C, Douhard B, Petersen D H, Hansen O, Henrichsen H H, Meersschaut J, Vandervorst W, Heyns M, Loo R, Caymax M 2011 Appl. Phys. Lett. 99 152103

    [21]

    Su S J, Cheng B W, Xue C L, Zhang D L, Zhang G Z, Wang Q M 2012 Acta Phys. Sin. 61 176104 (in Chinese) [苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明 2012 物理学报 61 176104]

    [22]

    Su S, Wang W, Cheng B, Hu W, Zhang G, Xue C, Zuo Y, Wang Q 2011 Solid State Commun. 151 647

  • [1] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [2] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20221024
    [3] 孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳. 直拉硅单晶的机械强度: 锗和氮共掺杂的效应. 物理学报, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [4] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [5] 刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波. 微波退火和快速热退火下钛调制镍与锗锡反应. 物理学报, 2021, 70(11): 116801. doi: 10.7498/aps.70.20202118
    [6] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [7] 高飞, 冯琦, 王霆, 张建军. 硅(001)图形衬底上锗硅纳米线的定位生长. 物理学报, 2020, 69(2): 028102. doi: 10.7498/aps.69.20191407
    [8] 黄蕾, 刘文亮, 邓超生. 磷、铋掺杂半导体锗光学性质的第一性原理研究. 物理学报, 2018, 67(13): 136101. doi: 10.7498/aps.67.20172680
    [9] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [10] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [11] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [12] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究. 物理学报, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [13] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [14] 汪建元, 王尘, 李成, 陈松岩. 硅基锗薄膜选区外延生长研究. 物理学报, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [15] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [16] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [17] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [18] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [19] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  3639
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-04
  • 修回日期:  2012-10-11
  • 刊出日期:  2013-03-05

Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金

  • 1. 华侨大学信息科学与工程学院, 厦门 361021;
  • 2. 中国科学院半导体研究所, 集成光电子学国家重点实验室, 北京 100083
    基金项目: 国家自然科学基金 (批准号: 61036003, 61176013, 60906035, 61177038)和华侨大学科研基金 (批准号: 12BS221)资助的课题.

摘要: Ge1-xSnx是一种新型IV族合金材料, 在光子学和微电子学器件研制中具有重要应用前景. 本文使用低温分子束外延(MBE)法, 在Ge(001)衬底上生长高质量的Ge1-xSnx合金, 组分x分别为1.5%, 2.4%, 2.8%, 5.3%和14%, 采用高分辨X射线衍射(HR-XRD)、卢瑟福背散射谱(RBS) 和透射电子显微镜(TEM)等方法表征Ge1-xSnx合金的材料质量. 对于低Sn组分(x 5.3%)的样品, Ge1-xSnx合金的晶体质量非常好, RBS的沟道/随机产额比(min)只有5.0%, HR-XRD曲线中Ge1-xSnx衍射峰的半高全宽(FWHM)仅100'' 左右. 对于x=14%的样品, Ge1-xSnx合金的晶体质量相对差一些, FWHM=264.6''.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回