搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性

曾永昌 田文 张振华

引用本文:
Citation:

周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性

曾永昌, 田文, 张振华

Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen

Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义.
    By using the first-principles method and the density-functional theory, the electronic properties of graphene nanoribbons(GNRs) with periodic nanoholes passivated by oxygen are studied. It is shown that for the zigzag graphene nanoribbon (ZGNR) in nonmagnetic state(NM), the metallic properties not only still remain but also are obviously enhanced after the holes are punched. But for the antiferromagnetic-state (AFM) ZGNR, after punching holes, it would be changed from semiconductor to metal. While for the ferromagnetic-state (FM) ZGNR, it can be transformed from metal to semiconductor or semimetal after punching holes. Besides, for the punched armchair graphene nanoribbon (AGNR), its band gap will be significantly widened. The in-depth analysis shows that these results are due to the effects of oxygen atoms on electronic properties of GNRs, and also due to the different quantum confinement effects from the neck subprime nanoribbon (NSNR) and edge subprime nanoribbon (ESNR) with different width and edge shape(zigzag or armchair). These findings are important for developing nano electronic devices.
    • 基金项目: 国家自然科学基金(批准号:61371065,61071015,61101009,61201080)、湖南省教育厅重点资助科研项目(批准号:12A001)、湖南省高校科技创新团队支持计划、湖南省重点学科建设项目和长沙理工大学创新项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 61071015, 61101009, 61201080), the Scientific Research Fund of Hunan Provincial Education Department, China, the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A001), the Construct Program of the Key Discipline in Hunan Province, China, and the Provincial Innovation Foundation of Changsha University of Science and Technology.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [3]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [4]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [5]

    Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008

    [6]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 物理学报 58 1931]

    [7]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156 ]

    [8]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [9]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [10]

    OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [11]

    Topsakal M, Aktrk E, Sevin çli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [12]

    Youngki Y, Fiori G, Seokmin H, Iannaccone G 2008 IEEE Transactions on 55 2314

    [13]

    Peres N M R, Klironomo F D, Tsai S W, Santos J R, Lopes J M B, Castro A H 2007 Eur. Phys. Lett. 80 67007

    [14]

    Ouyang F P, Peng S L, Liu Z F, Liu Z R 2011 ACS Nano 5 4023

    [15]

    Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405

    [16]

    Geunisk L, Kyeongjae Cho 2009 Phys. Rev. B 79 165440

    [17]

    Taylor J, Guo H, wang J 2001 Phys. Rev. B 63 245407

    [18]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [19]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [20]

    Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [21]

    Oswald W, Wu Z 2012 Phys. Rev. B 85 115431

    [22]

    Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y 2009 Nano Lett. 9 220

    [23]

    Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205

    [26]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [27]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [3]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [4]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [5]

    Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008

    [6]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 物理学报 58 1931]

    [7]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156 ]

    [8]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [9]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107

    [10]

    OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [11]

    Topsakal M, Aktrk E, Sevin çli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [12]

    Youngki Y, Fiori G, Seokmin H, Iannaccone G 2008 IEEE Transactions on 55 2314

    [13]

    Peres N M R, Klironomo F D, Tsai S W, Santos J R, Lopes J M B, Castro A H 2007 Eur. Phys. Lett. 80 67007

    [14]

    Ouyang F P, Peng S L, Liu Z F, Liu Z R 2011 ACS Nano 5 4023

    [15]

    Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405

    [16]

    Geunisk L, Kyeongjae Cho 2009 Phys. Rev. B 79 165440

    [17]

    Taylor J, Guo H, wang J 2001 Phys. Rev. B 63 245407

    [18]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [19]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [20]

    Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [21]

    Oswald W, Wu Z 2012 Phys. Rev. B 85 115431

    [22]

    Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y 2009 Nano Lett. 9 220

    [23]

    Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [25]

    Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205

    [26]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [27]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

  • [1] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [2] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [3] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [5] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [6] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [8] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [9] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [10] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [11] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [12] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [13] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [14] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [19] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [20] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
计量
  • 文章访问数:  3204
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-04
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-12-05

周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
    基金项目: 国家自然科学基金(批准号:61371065,61071015,61101009,61201080)、湖南省教育厅重点资助科研项目(批准号:12A001)、湖南省高校科技创新团队支持计划、湖南省重点学科建设项目和长沙理工大学创新项目资助的课题.

摘要: 利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回