搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

控制纳米结构以调控氧化锌的发光、磁性和细胞毒性

章建辉 韩季刚

引用本文:
Citation:

控制纳米结构以调控氧化锌的发光、磁性和细胞毒性

章建辉, 韩季刚

Tuning the photoluminescence, magnetism and cytotoxicity of ZnO by tailoring the nanostructures

Zhang Jian-Hui, Han Ji-Gang
PDF
导出引用
  • 氧化锌(ZnO) 纳米材料因其在UV 激光器、发光二极管、太阳能电池、稀磁半导体、生物荧光标示、靶向药物等领域中的广泛应用而成为最热门的研究课题之一. 调节和优化ZnO 纳米结构的性质是ZnO 的实际应用迫切所需. 在此, 通过发展聚乙烯吡咯烷酮导向结晶法、微波加热强制水解法、表面活性剂后处理法, 成功地制备出了尺寸、表面电荷或成分可调的球、半球、棒、管、T 型管、三脚架、片、齿轮、两层、多层、带盖罐子、碗等一系列ZnO 纳米结构. 通过简单地改变ZnO 纳米粒子的尺寸、形貌和表面电荷或成分, 有效地调控ZnO 本身的发光强度和位置, 并近90 倍地增强了荧光素染料的荧光强度; 诱使了强度可调的室温铁磁性; 实现了对ZnO纳米颗粒的细胞毒性的系统性调控.
    ZnO nanomaterials have been extensively investigated for its broad applications such as room-temperature UV lasers, light-emitting diodes, solar cells, dilute magnetic semiconductors, bio-labeling, and target medicines. Tuning and optimizing the properties of ZnO nanostructures are urgent for the practical applications. Here, the photoluminescence, magnetism, and cytotoxicity of ZnO nanparticles have been effectively tuned by adjusting the nanostructures. Firstly, by developing the novel polyvinylpyrrolidone(PVP)-directed crystallization route, microwave heating-assisted forced hydrolysis method, and post-treating with surfactants, a series of high pure ZnO nanostructures including spheres, semispheres, rods, tubes, T-type tubes, tripods, wafers, gears, double layers, multilayer, capped pots, and bowls with tunable size and surface component/charge has been successfully prepared. The PVP can greatly promote the ZnO nucleation by binding water, and direct the ZnO growth by forming a variety of soft-templates and/or selectively capping the specific ZnO facet which is confirmed by the infrared absorption spectra. Secondly, the band-edge UV emission of ZnO has been greatly modified in both intensity and peak position by simply changing the sizes, shapes, and surface component of the ZnO nanoparticles. However, changing the surface charge of ZnO nanoparticles can only vary the intensity of the band-edge UV emission of ZnO. Significantly, the fluorescence of fluorescein isothiocyanate (FITC) is increased by up to 90 fold through doping the FITC molecules into the ZnO naoncrystals, which can effectively separate the FITC molelcules and avoid the energy transfer and the resulting fluorescence self-quenching. Thirdly, the room temperature ferromagnetism with tunable intensity is induced in the ZnO nanoparticles by coating them with different surfactants at different concentrations. As confirmed by the x-ray photoemission spectra, the coated surfactant molecules can donate electrons to the ZnO nanoparticles and induce the ferromagnetism. The electron number varies with the surfactant and the surfactant concentration, leading to the fluctuant ferromagnetism. The theoretical calculation further reveal the fluctuant nature of ferromagnetism in the ZnO nanoparticles coated with surfactants. This explains the previously reported seemingly irreconcilable ZnO ferromagnetism induced by capping surfactants, and provides a general chemical approach to tuning the ferromagnetism of ZnO nanoparticles by modifying the capping-surfactant concentration. Finally, it is revealed that the shape, size, surface charge/composition, and band-gap of ZnO nanostructures have different influences on the ZnO-induced cytotoxicity. The surface composition or adsorbed species of NPs may contain the toxic matter such as OH-ions that determine the NP-induced cytotoxicity, and should be detected before cytotoxicity assays are conducted. The rod-like NPs are more toxic than the spherical NPs. The positive surface charge can accelerate the nanoparticle-induced toxic action and enhance the cytotoxicity. Compared with the effects of shape and surface composition/charge, the influence of the nanoparticle-size variation on the nanparticle-induced cytotoxicity is less significant, and can be overwhelmed by other factors. These results will be conducible to the cytotoxicity assay and safe usage of ZnO NPs.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB932304)、新世纪人才项目和自然科学基金地区项目(批准号:61264008)资助的课题.
    • Funds: Project supported by the National Basic Research Programs of China (Grant No. 2012CB932304), the Program for New Century Excellent Talents, and the National Natural Science Foundation of China (Grant No. 61264008).
    [1]

    Fierro J L G 2006 Metal Oxides: Chemistry & Applications (Boca Raton: Taylor & Francis Group) p182

    [2]

    Özgr , Alivov Ya I, Liu C, Teke A, Reshchikov M A, Doan S, Avrutin V, Cho S J 2005 J. Appl. Phys. 98 041301

    [3]

    Rossler U 1999 Landolt-Bornstein, New Series, Group III (Heidelberg: Springer) p41B

    [4]

    Klingshirn C F, Meyer B K, Waag A, Hoffmann A, Geurts J M M 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer) p9

    [5]

    Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris A S 2007 Adv. Funct. Mater. 17 3897

    [6]

    Escudero R, Escamilla R 2011 Solid State Commun. 151 97

    [7]

    Zhang J, Liu H, Wang Z, Ming N 2008 J. Crystal Growth 310 2848

    [8]

    Zhang J, Liu H, Wang Z, Ming N 2007 Appl. Phys. Lett. 90 113117

    [9]

    Zhang J, Thurber A, Tenne D A, Rasmussen J W, Wingett D, Hanna C, Punnoose A 2010 Adv. Funct. Mater. 20 4358

    [10]

    Thurber A T, Beausoleil G L, Alanko G A, Anghel J J, Jones M S, Johnson L M, Zhang J, Hanna C B, Tenne D A, Punnoose A 2011 J. Appl. Phys. 109 07C305

    [11]

    Zhang J, Xiong S, Wu X, Thurber A, Jones M, Gu M, Pan Z, Tenne D A, Hanna C B, Du Y, Punnoose A 2013 Phys. Rev. B 88 085437

    [12]

    Zhang J, Dong G, Thurber A, Hou Y, Gu M, Tenne D A, Hanna C B, Punnoose A 2012 Adv. Mater. 24 1232

    [13]

    Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett D G 2009 Nanoscale Res. Lett. 4 1409

    [14]

    Thurber A, Wingett D G, Rasmussen J, Layne J, Johnson L, Tenne D A, Zhang J, Hanna C B, Punnoose A 2012 Nanotoxicology 6 440

    [15]

    Zhang J, Dong G, Thurber A, Hou Y, Tenne D A, Hanna C B, Gu M, Pan Z, Wang K, Du Y, Punnoose A 2014 Particle & Particle Systems Characterization, DOI: 10.1002/ppsc.201400188

    [16]

    Joo J, Kwon S G, Yu J H, Hyeon T 2005 Adv. Mater. 17 1873

    [17]

    Lao J Y, Wen J G, Ren Z F 2002 Nano Lett. 2 1287

    [18]

    Pradhan D, Su Z, Sindhwani S, Honek J F, Leung K T 2011 J. Phys. Chem. C 115 18149

    [19]

    Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W 2004 Appl. Phys. Lett. 84 287

    [20]

    Li F, Ding Y, Gao P, Xin X, Wang Z L 2004 Angew. Chem. Int. Ed. 43 5238

    [21]

    Ghosh M, Raychaudhuri A K 2008 Nanotechnology 19 445704

    [22]

    Norberg N S, Gamelin D R 2005 J. Phys. Chem. B 109 20810

    [23]

    Wang X, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [24]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P 2001 Science 292 1897

    [25]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [26]

    Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S E, Wang L N, Muhammed M 1997 J. Phys. Chem. B 101 2598

    [27]

    Song J, Zhou J, Wang Z L 2006 Nano Lett. 6 1656

    [28]

    Tian Z R, Voigt J A, Mckenzie B, Mcdermott M J 2002 J. Am. Chem. Soc. 124 12954

    [29]

    Degen A, Kosec M 2000 J. Eur. Ceram. Soc. 20 667

    [30]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

    [31]

    Das S C, Green R J, Podder J, Regier T Z, Chang G S, Moewes A 2013 J. Phys. Chem. C 117 12745

    [32]

    Richters J P, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103

    [33]

    Helms V 2008 Principles of Computational Cell Biology (Weinheim: Wiley-VCH) p202

    [34]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [35]

    Deng S, Loh K P, Yi J B, Ding J, Tan H R, Lin M, Foo Y L, Zheng M, Sow C H 2008 Appl. Phys. Lett. 93 193111

    [36]

    Yazaki Y, Suda M, Kameyama N, Einaga Y 2010 Chem. Lett. 39 594595

    [37]

    Ortega D, Chen S J, Suzuki K, Garitaonandia J S 2012 J. Appl. Phys. 111 07C314

    [38]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [39]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

  • [1]

    Fierro J L G 2006 Metal Oxides: Chemistry & Applications (Boca Raton: Taylor & Francis Group) p182

    [2]

    Özgr , Alivov Ya I, Liu C, Teke A, Reshchikov M A, Doan S, Avrutin V, Cho S J 2005 J. Appl. Phys. 98 041301

    [3]

    Rossler U 1999 Landolt-Bornstein, New Series, Group III (Heidelberg: Springer) p41B

    [4]

    Klingshirn C F, Meyer B K, Waag A, Hoffmann A, Geurts J M M 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer) p9

    [5]

    Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris A S 2007 Adv. Funct. Mater. 17 3897

    [6]

    Escudero R, Escamilla R 2011 Solid State Commun. 151 97

    [7]

    Zhang J, Liu H, Wang Z, Ming N 2008 J. Crystal Growth 310 2848

    [8]

    Zhang J, Liu H, Wang Z, Ming N 2007 Appl. Phys. Lett. 90 113117

    [9]

    Zhang J, Thurber A, Tenne D A, Rasmussen J W, Wingett D, Hanna C, Punnoose A 2010 Adv. Funct. Mater. 20 4358

    [10]

    Thurber A T, Beausoleil G L, Alanko G A, Anghel J J, Jones M S, Johnson L M, Zhang J, Hanna C B, Tenne D A, Punnoose A 2011 J. Appl. Phys. 109 07C305

    [11]

    Zhang J, Xiong S, Wu X, Thurber A, Jones M, Gu M, Pan Z, Tenne D A, Hanna C B, Du Y, Punnoose A 2013 Phys. Rev. B 88 085437

    [12]

    Zhang J, Dong G, Thurber A, Hou Y, Gu M, Tenne D A, Hanna C B, Punnoose A 2012 Adv. Mater. 24 1232

    [13]

    Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett D G 2009 Nanoscale Res. Lett. 4 1409

    [14]

    Thurber A, Wingett D G, Rasmussen J, Layne J, Johnson L, Tenne D A, Zhang J, Hanna C B, Punnoose A 2012 Nanotoxicology 6 440

    [15]

    Zhang J, Dong G, Thurber A, Hou Y, Tenne D A, Hanna C B, Gu M, Pan Z, Wang K, Du Y, Punnoose A 2014 Particle & Particle Systems Characterization, DOI: 10.1002/ppsc.201400188

    [16]

    Joo J, Kwon S G, Yu J H, Hyeon T 2005 Adv. Mater. 17 1873

    [17]

    Lao J Y, Wen J G, Ren Z F 2002 Nano Lett. 2 1287

    [18]

    Pradhan D, Su Z, Sindhwani S, Honek J F, Leung K T 2011 J. Phys. Chem. C 115 18149

    [19]

    Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W 2004 Appl. Phys. Lett. 84 287

    [20]

    Li F, Ding Y, Gao P, Xin X, Wang Z L 2004 Angew. Chem. Int. Ed. 43 5238

    [21]

    Ghosh M, Raychaudhuri A K 2008 Nanotechnology 19 445704

    [22]

    Norberg N S, Gamelin D R 2005 J. Phys. Chem. B 109 20810

    [23]

    Wang X, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [24]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P 2001 Science 292 1897

    [25]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [26]

    Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S E, Wang L N, Muhammed M 1997 J. Phys. Chem. B 101 2598

    [27]

    Song J, Zhou J, Wang Z L 2006 Nano Lett. 6 1656

    [28]

    Tian Z R, Voigt J A, Mckenzie B, Mcdermott M J 2002 J. Am. Chem. Soc. 124 12954

    [29]

    Degen A, Kosec M 2000 J. Eur. Ceram. Soc. 20 667

    [30]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

    [31]

    Das S C, Green R J, Podder J, Regier T Z, Chang G S, Moewes A 2013 J. Phys. Chem. C 117 12745

    [32]

    Richters J P, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103

    [33]

    Helms V 2008 Principles of Computational Cell Biology (Weinheim: Wiley-VCH) p202

    [34]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [35]

    Deng S, Loh K P, Yi J B, Ding J, Tan H R, Lin M, Foo Y L, Zheng M, Sow C H 2008 Appl. Phys. Lett. 93 193111

    [36]

    Yazaki Y, Suda M, Kameyama N, Einaga Y 2010 Chem. Lett. 39 594595

    [37]

    Ortega D, Chen S J, Suzuki K, Garitaonandia J S 2012 J. Appl. Phys. 111 07C314

    [38]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [39]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

  • [1] 张珠峰, 任银拴. 溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能. 物理学报, 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [2] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 崔宏飞, 李凯, 杨晨光, 贺淑莉. (Fe1-xCox)3BO5纳米棒磁性的研究. 物理学报, 2015, 64(5): 057501. doi: 10.7498/aps.64.057501
    [5] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] 赵翠莲, 甄聪棉, 马丽, 潘成福, 侯登录. Ge纳米结构的形貌与铁磁性研究. 物理学报, 2013, 62(3): 037502. doi: 10.7498/aps.62.037502
    [7] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [8] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [9] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [10] 岂云开, 顾建军, 刘力虎, 张海峰, 徐芹, 孙会元. Al/ZnO/Al薄膜的结构与磁性分析. 物理学报, 2011, 60(5): 057502. doi: 10.7498/aps.60.057502
    [11] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [12] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [13] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [14] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 物理学报, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [15] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [16] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [17] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [19] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  2727
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-05-05

控制纳米结构以调控氧化锌的发光、磁性和细胞毒性

  • 1. 南京大学物理学院, 固体微结构物理国家重点实验室, 南京 210093
    基金项目: 国家重点基础研究发展计划(批准号:2012CB932304)、新世纪人才项目和自然科学基金地区项目(批准号:61264008)资助的课题.

摘要: 氧化锌(ZnO) 纳米材料因其在UV 激光器、发光二极管、太阳能电池、稀磁半导体、生物荧光标示、靶向药物等领域中的广泛应用而成为最热门的研究课题之一. 调节和优化ZnO 纳米结构的性质是ZnO 的实际应用迫切所需. 在此, 通过发展聚乙烯吡咯烷酮导向结晶法、微波加热强制水解法、表面活性剂后处理法, 成功地制备出了尺寸、表面电荷或成分可调的球、半球、棒、管、T 型管、三脚架、片、齿轮、两层、多层、带盖罐子、碗等一系列ZnO 纳米结构. 通过简单地改变ZnO 纳米粒子的尺寸、形貌和表面电荷或成分, 有效地调控ZnO 本身的发光强度和位置, 并近90 倍地增强了荧光素染料的荧光强度; 诱使了强度可调的室温铁磁性; 实现了对ZnO纳米颗粒的细胞毒性的系统性调控.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回