搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声情况下的量子网络直接通信

马鸿洋 秦国卿 范兴奎 初鹏程

引用本文:
Citation:

噪声情况下的量子网络直接通信

马鸿洋, 秦国卿, 范兴奎, 初鹏程

Quantum network direct communication protocol over noisy channel

Ma Hong-Yang, Qin Guo-Qing, Fan Xing-Kui, Chu Peng-Cheng
PDF
导出引用
  • 提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.
    The direct communication protocol of quantum network over noisy channel is proposed and investigated in this study. In communication process, all quantum nodes share multiparticle Greenberger-Horne-Zeilinger (GHZ)-states. The sending node takes the GHZ-state particle in the hand as the control qubit and the particle for sending secret information as the target qubit, which carries out the CNOT gate operation for the control and target qubit. Each receiving node takes the GHZ-state particle in the hand as the control qubit and the particle of the received secret information as the target qubit, in which the CNOT gate operation is repeated to obtain the secret information that contains the bit error. Each receiving node uses the extracted part of qubits as the checking qubits, and then corrects the bit-flip errors using parity check matrix together with the rest part of qubits. As a result, all receiving nodes obtain rectified secret information. In addition to the high security analysis, this study also presents the detailed analyses of the throughput efficiency and the communication performance.
    • 基金项目: 国家自然科学基金(批准号: 61173056, 11304174)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61173056, 11304174).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing Bangalore, India, December 1984 pp75-179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Zhou N R, Cheng H L, Tao X Y, Gong L H 2014 Quantum Inf. Process 13 513

    [5]

    Yan F L, Gao T 2005 Phys. Rev. A 72 012304

    [6]

    Ma H, Chen B, Guo Z, Li H 2008 Can. J. Phys. 86 1097

    [7]

    Zhang Y S, Li CF, Guo G C 2001 Phys. Rev. A 64 024302

    [8]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [9]

    Matsumoto R 2007 Phys. Rev. A 76 62316

    [10]

    Chen L B, Zheng C H, Ma H Y, Shan C J 2014 Opt. Commun. 328 73

    [11]

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303 (in Chinese) [郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 物理学报 62 130303]

    [12]

    Chen L B, Yang W 2014 Laser Phys. Lett. 11 105201

    [13]

    Zhang P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301 (in Chinese) [张沛, 周小清, 李智伟 2014 物理学报 63 130301]

    [14]

    Qiu T H, Yang G J 2014 Phys. Rev. A 89 052312

    [15]

    Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Han Z F 2014 Chin. Sci. Bull. 59 2825

    [16]

    Su X L 2014 Chin. Sci. Bull. 59 1083

    [17]

    Wang C, Guo H, Ren J, Cao Y, Peng C, Liu W 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [18]

    Gao F, Fang W, Wen Q Y 2014 Sci. China: Phys. Mech. Astron. 57 1244

    [19]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101

    [20]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [21]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhao S M 2013 Chin. Phys. B 22 030314

    [22]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [23]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [24]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [25]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [26]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [27]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [28]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G

    [29]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [30]

    Wen K, Long G L 2010 Int. J. Quantum. Info. 8 697

    [31]

    Zhou N R, Hua T X, Wu G T, He C S, Zhang Y 2014 Intern. J. Theor. Phys. 53 3829

    [32]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y

    [33]

    Chang Y, Xu C, Zhang S, Yan L 2014 Chin. Sci. Bull. 59 2541

    [34]

    Chang Y, Xu C, Zhang S, Yan L 2013 Chin. Sci. Bull. 58 4571

    [35]

    Zou X F, Qiu D W 2014 Sci. China: Phys Mech. Astron. 57 1696

    [36]

    Zheng C, Long G F 2014 Sci. China: Phys. Mech. Astron. 57 1238

    [37]

    Deng F G, Li X H, Li C Y, Zhou P, Liang Y J, Zhou H Y 2006 Chin. Phys. Lett. 23 1676

    [38]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T 2015 arXiv:1503.00451

    [39]

    Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214 (in Chinese) [李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214]

    [40]

    Jing J, Wu L A 2015 Sci. Bull. 60 328

    [41]

    Heilmann R, Gräfe M 2015 Sci. Bull. 60 96

    [42]

    Sheng Y B, Liu J Z, Sheng Y, Wang L, Zhou L 2014 Chin. Phys. B 23 080305

    [43]

    Deng F G, Long G L 2006 Commun. Theor. Phys. 46 443

    [44]

    Hao L, Wang C, Long G L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 125502

    [45]

    Nebendahl V 2015 Phys. Rev. A 91 022332

  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing Bangalore, India, December 1984 pp75-179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Zhou N R, Cheng H L, Tao X Y, Gong L H 2014 Quantum Inf. Process 13 513

    [5]

    Yan F L, Gao T 2005 Phys. Rev. A 72 012304

    [6]

    Ma H, Chen B, Guo Z, Li H 2008 Can. J. Phys. 86 1097

    [7]

    Zhang Y S, Li CF, Guo G C 2001 Phys. Rev. A 64 024302

    [8]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [9]

    Matsumoto R 2007 Phys. Rev. A 76 62316

    [10]

    Chen L B, Zheng C H, Ma H Y, Shan C J 2014 Opt. Commun. 328 73

    [11]

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303 (in Chinese) [郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 物理学报 62 130303]

    [12]

    Chen L B, Yang W 2014 Laser Phys. Lett. 11 105201

    [13]

    Zhang P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301 (in Chinese) [张沛, 周小清, 李智伟 2014 物理学报 63 130301]

    [14]

    Qiu T H, Yang G J 2014 Phys. Rev. A 89 052312

    [15]

    Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Han Z F 2014 Chin. Sci. Bull. 59 2825

    [16]

    Su X L 2014 Chin. Sci. Bull. 59 1083

    [17]

    Wang C, Guo H, Ren J, Cao Y, Peng C, Liu W 2014 Sci. China: Phys. Mech. Astron. 57 1233

    [18]

    Gao F, Fang W, Wen Q Y 2014 Sci. China: Phys. Mech. Astron. 57 1244

    [19]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101

    [20]

    Li C Y, Zhou H Y, Wang Y, Deng F G 2005 Chin. Phys. Lett. 22 1049

    [21]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhao S M 2013 Chin. Phys. B 22 030314

    [22]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [23]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [24]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902

    [25]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [26]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [27]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [28]

    Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y, Deng F G

    [29]

    Deng F G, Li X H, Li C Y, Zhou P, Zhou H Y 2006 Phys. Lett. A 359 359

    [30]

    Wen K, Long G L 2010 Int. J. Quantum. Info. 8 697

    [31]

    Zhou N R, Hua T X, Wu G T, He C S, Zhang Y 2014 Intern. J. Theor. Phys. 53 3829

    [32]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y

    [33]

    Chang Y, Xu C, Zhang S, Yan L 2014 Chin. Sci. Bull. 59 2541

    [34]

    Chang Y, Xu C, Zhang S, Yan L 2013 Chin. Sci. Bull. 58 4571

    [35]

    Zou X F, Qiu D W 2014 Sci. China: Phys Mech. Astron. 57 1696

    [36]

    Zheng C, Long G F 2014 Sci. China: Phys. Mech. Astron. 57 1238

    [37]

    Deng F G, Li X H, Li C Y, Zhou P, Liang Y J, Zhou H Y 2006 Chin. Phys. Lett. 23 1676

    [38]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T 2015 arXiv:1503.00451

    [39]

    Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214 (in Chinese) [李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214]

    [40]

    Jing J, Wu L A 2015 Sci. Bull. 60 328

    [41]

    Heilmann R, Gräfe M 2015 Sci. Bull. 60 96

    [42]

    Sheng Y B, Liu J Z, Sheng Y, Wang L, Zhou L 2014 Chin. Phys. B 23 080305

    [43]

    Deng F G, Long G L 2006 Commun. Theor. Phys. 46 443

    [44]

    Hao L, Wang C, Long G L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 125502

    [45]

    Nebendahl V 2015 Phys. Rev. A 91 022332

  • [1] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态. 物理学报, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [2] 贺振兴, 范兴奎, 初鹏程, 马鸿洋. 基于Cayley图上量子漫步的匿名通信方案. 物理学报, 2020, 69(16): 160301. doi: 10.7498/aps.69.20200333
    [3] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [4] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案. 物理学报, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [5] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [6] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [7] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] 李卓, 邢莉娟. 差错基、量子码与群代数. 物理学报, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [9] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [10] 王云江, 白宝明, 彭进业, 王新梅. 针对X-Z型Pauli信道的量子稀疏图码的反馈式和积译码算法. 物理学报, 2011, 60(3): 030306. doi: 10.7498/aps.60.030306
    [11] 邢莉娟, 李卓, 张武军. 加强的量子汉明限. 物理学报, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [12] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [13] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [14] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [15] 李 卓, 邢莉娟. 量子Generalized Reed-Solomon码. 物理学报, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [16] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进. 物理学报, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [17] 杜建忠, 陈秀波, 温巧燕, 朱甫臣. 保密多方量子求和. 物理学报, 2007, 56(11): 6214-6219. doi: 10.7498/aps.56.6214
    [18] 李 卓, 邢莉娟. 一类基于级联结构的量子好码. 物理学报, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [19] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [20] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象. 物理学报, 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
计量
  • 文章访问数:  3449
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-05-25
  • 刊出日期:  2015-08-05

噪声情况下的量子网络直接通信

  • 1. 青岛理工大学理学院, 青岛 266033;
  • 2. 清华大学物理系, 北京 100084
    基金项目: 国家自然科学基金(批准号: 61173056, 11304174)资助的课题.

摘要: 提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回