搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水表面减阻的格子Boltzmann方法数值模拟

张娅 潘光 黄桥高

引用本文:
Citation:

疏水表面减阻的格子Boltzmann方法数值模拟

张娅, 潘光, 黄桥高

Numerical investigation on drag reduction with hydrophobic surface by lattice Boltzmann method

Zhang Ya, Pan Guang, Huang Qiao-Gao
PDF
导出引用
  • 采用格子Boltzmann方法的多松弛模型和Shan-Chen多相流模型对雷诺数为100的疏水表面方柱绕流进行了数值模拟, 分析了疏水表面接触角和来流含气率对方柱绕流流场的影响. 研究结果表明: 疏水表面接触角一定时, 来流含气率在一定范围内, 疏水表面具有减阻的能力, 超出这一范围时会出现阻力系数、升力系数升高的现象, 同时在方柱近壁面处伴随涡的形成产生了气团脱落; 当来流含气率处于适当水平时, 接触角越大, 绕流物体近壁面处含气率越稳定, 减阻效果越明显. 分析发现疏水表面减阻的关键在于保证近壁面处气层的稳定性, 此时接触角越大, 减阻效果越明显. 本文从含气率角度出发分析疏水表面的减阻现象, 为进一步探索疏水表面减阻机理提出了新的思路.
    In recent years, hydrophobic surface has attracted much attention for its potential applications in flow drag reduction. This article focuses on the drag reduction mechanism of hydrophobic surface by the multi-relaxation-time scheme and the Shan-Chen multiphase model of lattice Boltzmann method. At first, we validate our method through the multiphase cases of wall adhesion effect and the single-phase cases of flow around a square column, showing that the results from our method are in good consistence with those in previous literature. Then, we simulate and analyze the typical problem of flow around a square column with hydrophobic surface while Reynolds number is 100, in order to investigate the influences of contact angle and gas holdup of the inlet flow on drag coefficient and lift coefficient. The simulation results show that for a given contact angle, hydrophobic surface is capable of reducing drag when gas holdup of the inlet flow is in a certain range; otherwise, drag coefficient will increase. With an appropriate gas holdup of the inlet flow, both drag coefficient and lift coefficient will decrease as the contact angle becomes larger. Finally, we compare gas holdup contours and the corresponding streamline patterns under different drag coefficients. Analyses suggest that the increases of drag coefficient and lift coefficient are related to the gas mass shedding near the square column wall where the eddy forms. Increasing the gas holdup of the inflow is properly conducible to reducing the gas mass shedding and also both drag coefficient and lift coefficient greatly if contact angle is too large. However, if the near-wall gas holdup is saturated, it will aggravate the instability of gas holdup and change the near-wall gas holdup a little, which makes drag coefficient increase slightly. When gas holdup of the inlet flow is appropriate, the near-wall gas holdup becomes steadier with a larger contact angle. Through analysis we note that for hydrophobic surface, the key factor of drag reduction is to keep the near-wall gas layer stable, with which the effect of drag reduction becomes better as the contact angle becomes larger. However, the larger the contact angle, the more sensitive to the change of gas holdup both drag coefficient and lift coefficient are, so it is not recommended to adopt the hydrophobic surface with very large contact angle. With the analysis of the gas holdup near hydrophobic surface with different contact angles, in this article we put forward a new approach to the further exploration of the drag reduction mechanism of hydrophobic surface.
      通信作者: 潘光, panguang601@163.com
    • 基金项目: 国家自然科学基金(批准号: 51279165, 51479170)资助的课题.
      Corresponding author: Pan Guang, panguang601@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279165, 51479170).
    [1]

    Yu Y S, Wei Q D 2005 J. Exp. Fluid Mech. 19 60 (in Chinese) [余永生, 魏庆鼎 2005 实验流体力学 19 60]

    [2]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

    [3]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [4]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [5]

    Tian J, Xu J F, Xue Q J 1997 J. Hydrodyn. 12 27 (in Chinese) [田军, 徐锦芬, 薛群基 1997 水动力研究与进展 12 27]

    [6]

    Pan G, Hang Q G, Liu Z Y, Hu H B, Song B W 2011 J. Shanghai Jiaotong Univ. 45 1440 (in Chinese) [潘光, 黄桥高, 刘占一, 胡海豹, 宋保维 2011 上海交通大学学报 45 1440]

    [7]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708(in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [8]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702(in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [9]

    Hong W P 2010 Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese) [洪文鹏 2010 博士学位论文 (北京:华北电力大学)]

    [10]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Academic Press of China) p29 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(第1版) (北京:科技出版社)第29 页]

    [11]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [12]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Academic Press of China) p166 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (第1版) (北京: 科技出版社) 第166页]

    [13]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [14]

    Lallemand P, Luo S L 2000 Phys. Rev. E 61 6546

    [15]

    Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (London: Springer) pp101-105

    [16]

    Sukop M C, Thorne D T 2006 Lattice Boltzmann Modeling An Introduction for Geoscientists and Engineers (Berlin: Springer) pp67-93

    [17]

    Guo W B, Wang N C, Shi B C, Guo Z L 2003 Chin. Phys. 12 0067

    [18]

    Wang G C, Shi B C, Deng B 2003 J. Basic Sci. Engineer. 11 335 (in Chinese) [王广超, 施保昌, 邓滨 2003 应用基础与工程科学学报 11 335]

  • [1]

    Yu Y S, Wei Q D 2005 J. Exp. Fluid Mech. 19 60 (in Chinese) [余永生, 魏庆鼎 2005 实验流体力学 19 60]

    [2]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

    [3]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [4]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [5]

    Tian J, Xu J F, Xue Q J 1997 J. Hydrodyn. 12 27 (in Chinese) [田军, 徐锦芬, 薛群基 1997 水动力研究与进展 12 27]

    [6]

    Pan G, Hang Q G, Liu Z Y, Hu H B, Song B W 2011 J. Shanghai Jiaotong Univ. 45 1440 (in Chinese) [潘光, 黄桥高, 刘占一, 胡海豹, 宋保维 2011 上海交通大学学报 45 1440]

    [7]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708(in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [8]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702(in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [9]

    Hong W P 2010 Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese) [洪文鹏 2010 博士学位论文 (北京:华北电力大学)]

    [10]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Academic Press of China) p29 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(第1版) (北京:科技出版社)第29 页]

    [11]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [12]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Academic Press of China) p166 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (第1版) (北京: 科技出版社) 第166页]

    [13]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [14]

    Lallemand P, Luo S L 2000 Phys. Rev. E 61 6546

    [15]

    Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (London: Springer) pp101-105

    [16]

    Sukop M C, Thorne D T 2006 Lattice Boltzmann Modeling An Introduction for Geoscientists and Engineers (Berlin: Springer) pp67-93

    [17]

    Guo W B, Wang N C, Shi B C, Guo Z L 2003 Chin. Phys. 12 0067

    [18]

    Wang G C, Shi B C, Deng B 2003 J. Basic Sci. Engineer. 11 335 (in Chinese) [王广超, 施保昌, 邓滨 2003 应用基础与工程科学学报 11 335]

  • [1] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [2] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [3] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [4] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [5] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [6] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [7] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响. 物理学报, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [8] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [9] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [10] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [13] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [14] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究. 物理学报, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [15] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [16] 赵俊英, 金宁德. 两相流相空间多元图重心轨迹动力学特征. 物理学报, 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [17] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [18] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [19] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  3038
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-10
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

疏水表面减阻的格子Boltzmann方法数值模拟

    基金项目: 国家自然科学基金(批准号: 51279165, 51479170)资助的课题.

摘要: 采用格子Boltzmann方法的多松弛模型和Shan-Chen多相流模型对雷诺数为100的疏水表面方柱绕流进行了数值模拟, 分析了疏水表面接触角和来流含气率对方柱绕流流场的影响. 研究结果表明: 疏水表面接触角一定时, 来流含气率在一定范围内, 疏水表面具有减阻的能力, 超出这一范围时会出现阻力系数、升力系数升高的现象, 同时在方柱近壁面处伴随涡的形成产生了气团脱落; 当来流含气率处于适当水平时, 接触角越大, 绕流物体近壁面处含气率越稳定, 减阻效果越明显. 分析发现疏水表面减阻的关键在于保证近壁面处气层的稳定性, 此时接触角越大, 减阻效果越明显. 本文从含气率角度出发分析疏水表面的减阻现象, 为进一步探索疏水表面减阻机理提出了新的思路.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回