搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO纳米花的制备及其性能

吴晓萍 刘金养 林丽梅 郑卫峰 瞿燕 赖发春

引用本文:
Citation:

ZnO纳米花的制备及其性能

吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春

Preparation and characteristics of ZnO nanoflowers

Wu Xiao-Ping, Liu Jin-Yang, Lin Li-Mei, Zheng Wei-Feng, Qu Yan, Lai Fa-Chun
PDF
导出引用
  • 利用化学气相沉积法, 在铜箔上成功制备出形似自然界中刺球花的ZnO纳米花结构. 实验进一步研究了氧气和氩气流量比例分别为1:150, 1:200, 1:250和1:400时对ZnO纳米花结构和性能的影响. 结果表明, ZnO纳米花上的ZnO纳米棒的长径比随氧气氛的减少而减小; 在氧气和氩气流量比例为1:250时制备出的ZnO纳米花尺寸均匀、形貌均一、花型结构最完美. ZnO 纳米花的室温光致发光谱表明, 随着氧气氛的减少, 可见区域的发光从一个波包变成一个宽峰, 且与锌空位相关的缺陷发光峰在减弱, 与氧空位相关的缺陷发光峰在增强. 基于实验结果, 提出了一种在铜箔上制备ZnO纳米花结构的生长模型.
    Unlike the general substrates such as SiO2, ITO, and AZO, the metal foil used as a substrate is rarely studied in application in the substrate, however, it has lots of advantages including cheapness, good conductivity and excellent scalability. In this paper, an acanthosphere-like structure named ZnO nanoflowers is successfully synthesized on Cu foil by using chemical vapor deposition method. The gas flows with oxygen-argon ratios ranging from 1 : 150, 1 : 200, 1 : 250 to 1 : 400, which impacted on Cu foil, and the property of the ZnO nanoflowers are carefully studied. The SEM images shown that there are lots of ZnO nanorods grown on the sphere cores, and look like flowers. The ZnO nanoflowers contains uniformly sized ZnO nanorods and morphology with best flower structure when the oxygen/argon gas flow ratio is 1 : 250. Furthermore, the length-diameter ratio of the ZnO nanorods on the ZnO nanoflowers decreases as the oxygen-argon gas flow ratio decreases. The ZnO is of hexagonal wurtzite structure indicated by XRD pattern and there exist no other diffraction peaks existence except those from the Cu foil. In addition, the photoluminescence of ZnO nanoflower changes from a wave packet into a broad peak in the visible region when the oxygen-argon gas flow ratio between decreases. Further study of the photoluminescence by fitting the peaks in visible region with gaussian function indicates that the photoluminescence relating to the oxygen vacancy defects increases, but that relating to the zinc vacancy defects decreases. Therefore, the white light emitting device may be constructed based on the ZnO nanoflowers studied shown above. Finally, a possible model of the ZnO nanoflowers grown on Cu foil is proposed based on the experimental results.
    • 基金项目: 国家自然科学基金(批准号: 11074041, 11374052)和福建省自然科学基金(批准号: 2012J01256, 2013J01174)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074041, 11374052) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2012J01256, 2013J01174).
    [1]

    Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601

    [2]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [3]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [4]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [5]

    Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342

    [6]

    Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120

    [7]

    Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666

    [8]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [9]

    Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93

    [10]

    Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]

    [11]

    Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]

    [12]

    Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34

    [13]

    Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558

    [14]

    Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132

    [15]

    Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534

    [16]

    Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112

    [17]

    Huang Y, Yuan G L 2012 Mater. Lett. 82 85

    [18]

    Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105

    [19]

    Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79

    [20]

    Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083

    [21]

    Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224

    [22]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [23]

    Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877

    [24]

    Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906

    [25]

    Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203

    [26]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 物理学报 63 077102]

  • [1]

    Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601

    [2]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [3]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [4]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [5]

    Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342

    [6]

    Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120

    [7]

    Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666

    [8]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [9]

    Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93

    [10]

    Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]

    [11]

    Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]

    [12]

    Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34

    [13]

    Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558

    [14]

    Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132

    [15]

    Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534

    [16]

    Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112

    [17]

    Huang Y, Yuan G L 2012 Mater. Lett. 82 85

    [18]

    Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105

    [19]

    Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79

    [20]

    Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083

    [21]

    Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224

    [22]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [23]

    Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877

    [24]

    Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906

    [25]

    Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203

    [26]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 物理学报 63 077102]

  • [1] 王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚. 本征富受主型ZnO微米管光致发光的温度调控机制. 物理学报, 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [4] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [5] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究. 物理学报, 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [7] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [8] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [9] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [10] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [11] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [12] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [13] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [14] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [15] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [16] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [17] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [19] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  4198
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-06-14
  • 刊出日期:  2015-10-05

ZnO纳米花的制备及其性能

  • 1. 福建师范大学物理与能源学院, 福建省量子调控与新能源材料重点实验室, 福州 350117
    基金项目: 国家自然科学基金(批准号: 11074041, 11374052)和福建省自然科学基金(批准号: 2012J01256, 2013J01174)资助的课题.

摘要: 利用化学气相沉积法, 在铜箔上成功制备出形似自然界中刺球花的ZnO纳米花结构. 实验进一步研究了氧气和氩气流量比例分别为1:150, 1:200, 1:250和1:400时对ZnO纳米花结构和性能的影响. 结果表明, ZnO纳米花上的ZnO纳米棒的长径比随氧气氛的减少而减小; 在氧气和氩气流量比例为1:250时制备出的ZnO纳米花尺寸均匀、形貌均一、花型结构最完美. ZnO 纳米花的室温光致发光谱表明, 随着氧气氛的减少, 可见区域的发光从一个波包变成一个宽峰, 且与锌空位相关的缺陷发光峰在减弱, 与氧空位相关的缺陷发光峰在增强. 基于实验结果, 提出了一种在铜箔上制备ZnO纳米花结构的生长模型.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回