搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光散斑成像的零件表面粗糙度建模

陈苏婷 胡海锋 张闯

引用本文:
Citation:

基于激光散斑成像的零件表面粗糙度建模

陈苏婷, 胡海锋, 张闯

Surface roughness modeling based on laser speckle imaging

Chen Su-Ting, Hu Hai-Feng, Zhang Chuang
PDF
导出引用
  • 表面粗糙度是衡量机械表面加工水平的重要参数. 通过构建一套激光散斑成像采集系统, 获取了不同表面加工类型和不同粗糙度值的零件表面激光散斑图像. 应用Tamura纹理特征理论提取图像的纹理粗糙度、对比度、方向度特征, 并分析了这三个特征与表面粗糙度的关系. 发现了纹理粗糙度特征与表面粗糙度的单调关系, 推导出平磨、外磨、研磨三种表面加工工艺的粗糙度值与图像纹理粗糙度特征的数学函数关系, 实现了表面粗糙度的测量. 同时, 利用Tamura纹理特征与加工工艺的依赖关系, 建立了基于贝叶斯网络的工艺识别推理模型, 推理出了零件表面加工工艺. 通过为多种加工类型表面建立粗糙度测量模型, 为粗糙度测量提供了新思路. 实验证明所提的粗糙度测量模型能以较高的准确率识别出零件表面加工类型并测量出其表面粗糙度值.
    Surface roughness is an important parameter in measuring the roughness of surface formed by laser irradiation on the workpiece. Speckle images of rough surfaces in different classes and different surface roughness values are obtained by constructing a set of laser speckle image acquisition systems. First, the texture features of speckle images including coarseness, contrast and direction are extracted using Tamura texture theory. Then, the interactions these three features with the surface roughness are analyzed. Based on the analyses of their monotonic relations, the surface roughness functions, including flat grinding, external grinding and mill grinding craftworks, are established respectively between the texture coarseness feature of the speckle image Fcrs and surface roughness Ra. Through the establishment of surface roughness function for the above three classes of workpieces, the value of surface roughness can be computed directly. However, before obtaining the value of surface roughness, the classes of processing technic should be determined because of the inconsistency of function expressions for different classes. And based on the specific connection and related dependencies between Tamura texture features and workpiece class, Bayes network is proposed to describe this uncertainty relation among different classes. Through network structure learning and parameter learning, a model for reasoning is found which can be used to determine the class of workpiece after obtaining texture coarseness feature Fcrs. Thus, not only can the value of surface roughness be measured, also the class of work-piece can be recognized. Experiments are conducted to confirm the feasibility of the proposed model for measurement. The detection results indicate that high precision and accuracy are achieved for both workpiece class recognition and roughness measurement.
      通信作者: 陈苏婷, sutingchen@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61302188)、中国博士后特别资助基金(批准号: 2012 T50510)、中国博士后科学基金(批准号: 2011 M500940)、江苏省高校重大自然科学基金(批准号: 12KJA510001)和江苏高校优势学科建设工程项目资助的课题.
      Corresponding author: Chen Su-Ting, sutingchen@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61302188), the Special Science Foundation for Post Doctorate Research of the Ministry of Science and Technology of China (Grant No. 2012 T50510), the Science Foundation for Post Doctorate Research of the Ministry of Science and Technology of China (Grant No. 2011 M500940), the Key Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 12KJA510001), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Wang C X 2010 IIE Trans. 35 11

    [2]

    Fuh YK, Hsu KC, Fan JR 2012 Opt. Lett. 37 848

    [3]

    Shahabi H H, Ratnam M M 2010 Int. J. Adv. Manuf. Technol. 46 275

    [4]

    Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) p18, p29

    [5]

    Williams G, Pfeifer M, Vartanyants I, Robinson I 2003 Phys. Rev. Lett. 90 175501

    [6]

    Pierce M S, Moore R G, Sorensen L B, Kevan S D, Hellwig O, Fullerton E E, Kortright J B 2003 Phys. Rev. Lett. 90 175502

    [7]

    Zhang N Y Teng S Y, Song H S, Liu G Y, Cheng C F 2009 Chin. Phys. Lett. 26 034209

    [8]

    Briers D, Duncan D, Hirst E, Kirkpatrick S J, Larsson M, Steenbergen W, Thompson O B 2013 J. Biomed. Opt. 18 066018

    [9]

    Samtas G 2014 Int. J. Adv. Manuf. Technol. 73 353

    [10]

    Shimizu M, Sawano H, Yoshioka H 2014 Precis. Eng 38 1

    [11]

    Gao Z, ZhaoX Z 2011 Opt. Laser Eng. 50 668

    [12]

    Kayahan E, Oktem H, Hacizade F 2010 Tribol. Int. 43 307

    [13]

    Wu Y L, Wu Z S 2014 Chin. Phys. B 23 37801

    [14]

    Regan C, Ramirez-San-Juan J C, Choi B 2014 Opt. Lett. 39 5006

    [15]

    Zeng Y, Wang M, Feng G 2013 Opt. Lett. 38 1313

    [16]

    Song H S, Zhuang Q, Liu G Y, Qin X F, Chen C F 2014 Acta Phys. Sin. 63 094201 (in Chinese) [宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福 2014 物理学报 63 094201]

    [17]

    Françon M 2012 Laser speckle and applications in optics (Elsevier) p56

    [18]

    Bunge, H J 2013 Texture analysis in materials science: mathematical methods (Elsevier) p23

    [19]

    Pernkopf F, Wohlmayr M 2013 Pattern Recogn. 46 464

    [20]

    Florian C, Traverso P A, Santarelli A, Filicori F 2013 IEEE Trans. Instrum. Meas. 62 2857

  • [1]

    Wang C X 2010 IIE Trans. 35 11

    [2]

    Fuh YK, Hsu KC, Fan JR 2012 Opt. Lett. 37 848

    [3]

    Shahabi H H, Ratnam M M 2010 Int. J. Adv. Manuf. Technol. 46 275

    [4]

    Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) p18, p29

    [5]

    Williams G, Pfeifer M, Vartanyants I, Robinson I 2003 Phys. Rev. Lett. 90 175501

    [6]

    Pierce M S, Moore R G, Sorensen L B, Kevan S D, Hellwig O, Fullerton E E, Kortright J B 2003 Phys. Rev. Lett. 90 175502

    [7]

    Zhang N Y Teng S Y, Song H S, Liu G Y, Cheng C F 2009 Chin. Phys. Lett. 26 034209

    [8]

    Briers D, Duncan D, Hirst E, Kirkpatrick S J, Larsson M, Steenbergen W, Thompson O B 2013 J. Biomed. Opt. 18 066018

    [9]

    Samtas G 2014 Int. J. Adv. Manuf. Technol. 73 353

    [10]

    Shimizu M, Sawano H, Yoshioka H 2014 Precis. Eng 38 1

    [11]

    Gao Z, ZhaoX Z 2011 Opt. Laser Eng. 50 668

    [12]

    Kayahan E, Oktem H, Hacizade F 2010 Tribol. Int. 43 307

    [13]

    Wu Y L, Wu Z S 2014 Chin. Phys. B 23 37801

    [14]

    Regan C, Ramirez-San-Juan J C, Choi B 2014 Opt. Lett. 39 5006

    [15]

    Zeng Y, Wang M, Feng G 2013 Opt. Lett. 38 1313

    [16]

    Song H S, Zhuang Q, Liu G Y, Qin X F, Chen C F 2014 Acta Phys. Sin. 63 094201 (in Chinese) [宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福 2014 物理学报 63 094201]

    [17]

    Françon M 2012 Laser speckle and applications in optics (Elsevier) p56

    [18]

    Bunge, H J 2013 Texture analysis in materials science: mathematical methods (Elsevier) p23

    [19]

    Pernkopf F, Wohlmayr M 2013 Pattern Recogn. 46 464

    [20]

    Florian C, Traverso P A, Santarelli A, Filicori F 2013 IEEE Trans. Instrum. Meas. 62 2857

计量
  • 文章访问数:  2394
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-05
  • 修回日期:  2015-07-16
  • 刊出日期:  2015-12-05

基于激光散斑成像的零件表面粗糙度建模

  • 1. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044;
  • 2. 中国人民解放军 94654部队, 南京 210046
  • 通信作者: 陈苏婷, sutingchen@nuist.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61302188)、中国博士后特别资助基金(批准号: 2012 T50510)、中国博士后科学基金(批准号: 2011 M500940)、江苏省高校重大自然科学基金(批准号: 12KJA510001)和江苏高校优势学科建设工程项目资助的课题.

摘要: 表面粗糙度是衡量机械表面加工水平的重要参数. 通过构建一套激光散斑成像采集系统, 获取了不同表面加工类型和不同粗糙度值的零件表面激光散斑图像. 应用Tamura纹理特征理论提取图像的纹理粗糙度、对比度、方向度特征, 并分析了这三个特征与表面粗糙度的关系. 发现了纹理粗糙度特征与表面粗糙度的单调关系, 推导出平磨、外磨、研磨三种表面加工工艺的粗糙度值与图像纹理粗糙度特征的数学函数关系, 实现了表面粗糙度的测量. 同时, 利用Tamura纹理特征与加工工艺的依赖关系, 建立了基于贝叶斯网络的工艺识别推理模型, 推理出了零件表面加工工艺. 通过为多种加工类型表面建立粗糙度测量模型, 为粗糙度测量提供了新思路. 实验证明所提的粗糙度测量模型能以较高的准确率识别出零件表面加工类型并测量出其表面粗糙度值.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回