搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合下冷原子的双反射

黄珍 曾文 古艺 刘利 周鲁 张卫平

引用本文:
Citation:

自旋-轨道耦合下冷原子的双反射

黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平

Double reflection of spin-orbit-coupled cold atoms

Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping
PDF
导出引用
  • 随着中性冷原子气体的人造自旋-轨道耦合的实验实现,近年来人们开始关注与之相关的可能应用,其中包括自旋-轨道耦合下原子反射镜的研究. 本文在前人研究的基础上,考虑一束自旋-轨道耦合的冷原子气体入射到有限高势垒的情形,通过将部分反射和全反射情况进行对比,发现了与之前研究不同的性质. 我们发现,在全反射条件下,反射原子的极化率随入射角变化较大,而随自旋-轨道耦合强度和原子入射能量的变化较小. 但在发生部分反射的情况下,反射原子的极化率不仅随入射角变化较大,随自旋-轨道耦合强度和原子的入射能量变化也十分明显. 我们仔细研究了自旋-轨道耦合原子气体的反射性质并讨论了其可能的应用.
    Artificial spin-orbit coupling in neutral cold atom have been experimentally implemented in alkali-metal atoms. Nowadays people begin to explore its possible applications. One of the most interesting applications is the atomic mirror, which is a key element in atom optics. And spin-orbit coupling provides the atomic beam with the possibility that the atomic spin can flip during its propagation, thus can be used to prepare the quantum-state-selective atomic mirror. In 2008, Juzeliūnas, et al. [Juzeliūnas G, et al. 2008 Phys. Rev. Lett. 100 200405] studied a spin-orbit-coupled matter wave packet of cold atom gas impinging on an infinite step potential created by the optical light field. Results showed that there is not only ordinary specular reflection, but also non-specular one. The reflected atoms split into two beams and double reflection takes place. Based on the previous study, here we consider a matter wave packet of spin-orbit-coupled cold atom gas impinging on a finite step potential created by the optical light field. Due to the effect of the spin-orbit coupling, in addition to the propagating state, the eigenstates of cold atoms include evanescent state and oscillating evanescent state. Under suitable conditions double reflection will take place. If there are just evanescent waves in the step potential, total internal reflection will take place. In other words, when there is propagating wave in the step potential, partial reflection will take place. By taking into account both the total internal reflection and partial reflection, we study not only the polarization rate but also the reflectivity each as a function of incident energy, incident angle and spin-orbit coupling strength. The properties different from those of previous studies are found. In the case of total internal reflection, we find that the polarization rate of the reflected atoms is sensitive to incident angle instead of the spin-orbit coupling strength and incident energy. While in the case of partial reflection, all these factors strongly affect the polarization rate and reflectivity. We carefully study these properties and find that, on one hand, high efficiency atomic mirror can be acquired in the case of total internal reflection, and on the other hand, we can acquire the different polarization rates by adjusting the incident angle, the spin-orbit coupling strength and incident energy in the case of partial reflection.
      通信作者: 周鲁, lzhou@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374003)资助的课题.
      Corresponding author: Zhou Lu, lzhou@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374003).
    [1]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

    [2]

    Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401

    [3]

    Zhai H 2015 Rep. Prog. Phys. 78 026001

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302

    [7]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [8]

    Sablikov V A, Tkach Y Y 2007 Phys. Rev. B 76 245321

    [9]

    Ban Y, Sherman E Y 2012 Phys. Rev. A 85 052130

    [10]

    Chalaev O, Loss D 2005 Phys. Rev. B 71 245318

    [11]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p414 (in Chinese) [王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第414页]

    [12]

    Roach T M, Abele H, Boshier M G, Grossman H L, Zetie K P, Hinds E A 1995 Phys. Rev. Lett. 75 629

    [13]

    Cook R J, Hill R K 1982 Opt. Commun. 43 258

    [14]

    Balykin V I, Letokhov V S, Ovchinnikov Y B, Sidorov A I 1988 Phys. Rev. Lett. 60 2137

    [15]

    Juzeliūnas G, Ruseckas J, Jacob A, Santos L, Öhberg P 2008 Phys. Rev. Lett. 100 200405

    [16]

    Zhang Y P, Mao L, Zhang C W 2012 Phys. Rev. Lett. 108 035302

    [17]

    Tang L, Huang J H, Duan Z L, Zhang W P, Zhou Z Y, Feng Y Y, Zhu R 2006 Acta Phys. Sin. 55 6606 (in Chinese) [唐霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱荣 2006 物理学报 55 6606]

    [18]

    Zhou L, Qin J L, Lan Z H, Dong G J, Zhang W P 2015 Phys. Rev. A 91 031603

  • [1]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

    [2]

    Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401

    [3]

    Zhai H 2015 Rep. Prog. Phys. 78 026001

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302

    [7]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [8]

    Sablikov V A, Tkach Y Y 2007 Phys. Rev. B 76 245321

    [9]

    Ban Y, Sherman E Y 2012 Phys. Rev. A 85 052130

    [10]

    Chalaev O, Loss D 2005 Phys. Rev. B 71 245318

    [11]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p414 (in Chinese) [王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第414页]

    [12]

    Roach T M, Abele H, Boshier M G, Grossman H L, Zetie K P, Hinds E A 1995 Phys. Rev. Lett. 75 629

    [13]

    Cook R J, Hill R K 1982 Opt. Commun. 43 258

    [14]

    Balykin V I, Letokhov V S, Ovchinnikov Y B, Sidorov A I 1988 Phys. Rev. Lett. 60 2137

    [15]

    Juzeliūnas G, Ruseckas J, Jacob A, Santos L, Öhberg P 2008 Phys. Rev. Lett. 100 200405

    [16]

    Zhang Y P, Mao L, Zhang C W 2012 Phys. Rev. Lett. 108 035302

    [17]

    Tang L, Huang J H, Duan Z L, Zhang W P, Zhou Z Y, Feng Y Y, Zhu R 2006 Acta Phys. Sin. 55 6606 (in Chinese) [唐霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱荣 2006 物理学报 55 6606]

    [18]

    Zhou L, Qin J L, Lan Z H, Dong G J, Zhang W P 2015 Phys. Rev. A 91 031603

  • [1] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [2] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [3] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [4] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [5] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [6] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [7] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [8] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [9] 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道耦合下二维双极化子的基态性质. 物理学报, 2016, 65(17): 177801. doi: 10.7498/aps.65.177801
    [10] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [11] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [12] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [13] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [14] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [15] 杜菲, 李旭, 黄祖飞, 李昂, 王春忠, 陈岗. 反尖晶石LiNiVO4中几何失措的抑制与磁有序. 物理学报, 2009, 58(1): 541-545. doi: 10.7498/aps.58.541
    [16] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [17] 傅美欢, 任中洲. 含自旋轨道耦合的三维各向同性谐振子的四类升降算符. 物理学报, 2004, 53(5): 1280-1283. doi: 10.7498/aps.53.1280
    [18] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
    [19] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型. 物理学报, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [20] 杜懋陆, 谌家军, 陈康生. Ni2+—6X-络合物g因子的双自旋—轨道耦合系数模型. 物理学报, 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
计量
  • 文章访问数:  3668
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-14
  • 修回日期:  2016-06-02
  • 刊出日期:  2016-08-05

自旋-轨道耦合下冷原子的双反射

  • 1. 华东师范大学物理与材料科学学院, 上海 200241;
  • 2. 山西大学, 极端光学协同创新中心, 太原 030006
  • 通信作者: 周鲁, lzhou@phy.ecnu.edu.cn
    基金项目: 国家自然科学基金(批准号:11374003)资助的课题.

摘要: 随着中性冷原子气体的人造自旋-轨道耦合的实验实现,近年来人们开始关注与之相关的可能应用,其中包括自旋-轨道耦合下原子反射镜的研究. 本文在前人研究的基础上,考虑一束自旋-轨道耦合的冷原子气体入射到有限高势垒的情形,通过将部分反射和全反射情况进行对比,发现了与之前研究不同的性质. 我们发现,在全反射条件下,反射原子的极化率随入射角变化较大,而随自旋-轨道耦合强度和原子入射能量的变化较小. 但在发生部分反射的情况下,反射原子的极化率不仅随入射角变化较大,随自旋-轨道耦合强度和原子的入射能量变化也十分明显. 我们仔细研究了自旋-轨道耦合原子气体的反射性质并讨论了其可能的应用.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回