搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生

吴航陈燎舒学文张新亮

引用本文:
Citation:

基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生

吴航陈燎舒学文张新亮

Long-period gratings based generator of all-fiber third-order orbital angular momentum modes assisted by femtosecond microfabrication

Hang Wu Liao Chen Xuewen Shu Xinliang Zhang
PDF
导出引用
  • 高效地产生相互正交的各阶轨道角动量(Orbital Angular Momentum,OAM)模式具有重要的研究价值。目前全光纤系统中高效地产生高阶轨道角动量模式的方法主要是基于二氧化碳激光器加工的长周期光纤光栅(Long period fiber grating,LPFG)。然而产生高阶模式的光栅需要强的折射率调制与小的光栅周期,因此二氧化碳激光器高的功率和大的聚焦光斑不利于其刻写的重复性、成功率和延展性。为了解决这一问题,本文首次提出并制作了基于飞秒激光加工的三阶OAM模式转换器。本文在六模光纤上加工出了非对称的长周期光纤光栅,实验结果表明它在1550nm附近能将基模转换为三阶的角向线性偏振模式LP31模式,模式转换效率为98%,进一步地该模式可以被叠加转化为三阶OAM模式。与此同时,在1310nm附近,该光栅还能够产生角向一阶径向二阶的OAM模式。该方案证明了飞秒激光加工提供了一种可用于全光纤系统具有高重复刻写性的长周期光纤光栅来产生高阶OAM模式的思路。
    The generation of Orbital Angular Momentum (OAM) modes is of great importance in a variety of applications such as optical tweezers, quantum optics, and optical communication systems. Particularly, how can high-order OAM modes be generated efficiently in fibers with the advantage of low cost and compatible with fiber system. the Traditional method for first order to third order OAM is based on long period fiber grating (LPFG) fabricated by Carbon dioxide laser. However, high power and large focused spot of Carbon dioxide laser are unfavorable for stable and repeatable generation of higher-order OAM, which needs the LPFG with small grating pitch. In order to solve this problem, a third-order OAM mode converter based on femtosecond microfabrication is proposed and fabricated for the first time. With the advantage of 4.4μm focused spot size near the core, lower power and lower heat absorption efficiency, this method can be more stable and promising. Therefore, we firstly did mode filed analysis and simulate the intensity and phase profiles of the superposed mode field in LP odd-even mode with different scales and phases patterns to obtain OAM mode. Second, we use the coupled-mode theory to analysis and simulate the transmission spectrum of LPFG,which guide the setting of the grating parameter such as the grating pitch, the depth of modulation and the length of the grating. By experimental verification, an asymmetric modulated long-period fiber grating with a pitch setting to 194μm is fabricated on six-mode fiber. the fundamental mode can be converted to the third-order angular linear polarization mode LP31 mode with 98% mode conversion efficiency near 1550nm, and further converted to the OAM±3 modes by superposition of the odd and even LP31 mode with ±π∕2 phase difference. At the same time, this fiber gratings can also generate LP12 mode with 90% mode conversion efficiency near 1325nm. Then we can take the same approach to transform LP12 mode to OAM modes with angular first-order as well as radial second-order. The experiment is consistent with the simulation. Thus, this scheme provides an idea to generate high-order OAM modes in all-fiber systems using only one grating with high repeatability.
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 458185

    [2]

    Poynting J H 1909 Proc. R. Soc. London Ser. A 82560

    [3]

    Bliokh K Y, Rodrí guez-Fortuño F J, Nori F, Zayats A V 2015 Nat. Photonics 9796

    [4]

    Vitullo D L, Leary C C, Gregg P, Smith R A, Reddy D V, Ramachandran S, Raymer M G 2017 Phys. Rev. Lett. 118083601

    [5]

    Grier D 2003 Nature 424810

    [6]

    Leach J, Jack B, Romero J, K Jha A, M Yao A, Frank-Arnold S, G Ireland D, W Boyd R, M Barnett S, J Padgett M 2010 Science 329662

    [7]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6488

    [8]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 3401545

    [9]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10327

    [10]

    Cao H, Gao S C, Zhang C, Wang J, He D Y, Liu B H,Guo G C 2020 Optica 7232

    [11]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7254

    [12]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun 112321

    [13]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt 13064001.

    [14]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'brien J, Thompson M, Yu S 2012 Science 338363

    [15]

    Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett 38932

    [16]

    Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt 548030

    [17]

    Fujisawa T, Saitoh K 2020 Photonics. Res, 81278

    [18]

    Ramachandran, S, Kristensen P 2013 Nanophotonics 2455

    [19]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett 404376

    [20]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 2419278

    [21]

    Li Y, Jin L, Wu H, Gao S, Feng Y H, Li Z 2017 Photonics. J 91

    [22]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7287

    [23]

    Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett 425210

    [24]

    Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett 46949

    [25]

    Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 2943371

    [26]

    He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett 453621

    [27]

    Huang H, Milione G, Lavery M P J, Xie G, Ren Y, Cao Y, Ahmed N, Nguyen T A, Nolan D A, Li M, Tur M, Alfano R R, Willner A E 2015 Scientific reports 51

    [28]

    Han Y, Liu Y G, Huang W, Wang Z, Guo J, Luo M 2016 Opt. Express 2417272

    [29]

    Anemogiannis E, Glytsis E N, Gaylord T K 2003 J. Lightwave Technology 21218

    [30]

    Erdogan T 1997 J. Lightwave Technology 151277

    [31]

    Jin L, Jin W, Ju J, Wang Y 2010 J. Lightwave Technology 281745

    [32]

    Barshak E, Alexeyev C, Lapin B, Yavorsky M 2015 Phys. Rev. A 91033833.

    [33]

    Bernas M, Zolnacz K, Napiorkowski M, Statkiewicz G, Urbanczyk W 2021 Opt. Lett 464446

    [34]

    Pu G Q, Yi L L, Zhang L, Luo C, Li Z H, Hu W S 2020 Light:Science & Applications 91

  • [1] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, doi: 10.7498/aps.71.20211909
    [2] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, doi: 10.7498/aps.70.20210084
    [3] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, doi: 10.7498/aps.68.20182036
    [4] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, doi: 10.7498/aps.68.20190178
    [5] 张法业, 姜明顺, 隋青美, 吕珊珊, 贾磊. 基于光纤光栅的冲击激励声发射响应机理与定位方法研究. 物理学报, doi: 10.7498/aps.66.074210
    [6] 张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅. 新型长周期光纤光栅的设计与研制进展. 物理学报, doi: 10.7498/aps.66.070704
    [7] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, doi: 10.7498/aps.64.234207
    [8] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, doi: 10.7498/aps.62.064203
    [9] 李源, 成浩然, 李蔚, 余少华, 杨铸. 一种光纤通信系统中非线性克尔效应抑制新方法. 物理学报, doi: 10.7498/aps.61.194205
    [10] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, doi: 10.7498/aps.60.034214
    [11] 曾祥楷, 饶云江. 长周期光纤光栅傅里叶模式耦合理论. 物理学报, doi: 10.7498/aps.59.8607
    [12] 曾祥楷, 饶云江. Bragg光纤光栅傅里叶模式耦合理论. 物理学报, doi: 10.7498/aps.59.8597
    [13] 朱涛, 史翠华, 饶云江, 郑建成. CO2激光写入长周期光纤光栅的折变理论及实验研究. 物理学报, doi: 10.7498/aps.58.6316
    [14] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, doi: 10.7498/aps.57.3016
    [15] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, doi: 10.7498/aps.56.5287
    [16] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, doi: 10.7498/aps.56.274
    [17] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, doi: 10.7498/aps.55.249
    [18] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, doi: 10.7498/aps.54.1630
    [19] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, doi: 10.7498/aps.53.494
    [20] 韩 群, 吕可诚, 李家方, 李乙钢, 陈胜平1. 一种新颖的光纤光栅温度调谐装置的原理与实验研究. 物理学报, doi: 10.7498/aps.53.4253
计量
  • 文章访问数:  165
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2022-12-02

基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生

  • 华中科技大学武汉光电国家研究中心和光学与电子信息学院, 武汉 430074

摘要: 高效地产生相互正交的各阶轨道角动量(Orbital Angular Momentum,OAM)模式具有重要的研究价值。目前全光纤系统中高效地产生高阶轨道角动量模式的方法主要是基于二氧化碳激光器加工的长周期光纤光栅(Long period fiber grating,LPFG)。然而产生高阶模式的光栅需要强的折射率调制与小的光栅周期,因此二氧化碳激光器高的功率和大的聚焦光斑不利于其刻写的重复性、成功率和延展性。为了解决这一问题,本文首次提出并制作了基于飞秒激光加工的三阶OAM模式转换器。本文在六模光纤上加工出了非对称的长周期光纤光栅,实验结果表明它在1550nm附近能将基模转换为三阶的角向线性偏振模式LP31模式,模式转换效率为98%,进一步地该模式可以被叠加转化为三阶OAM模式。与此同时,在1310nm附近,该光栅还能够产生角向一阶径向二阶的OAM模式。该方案证明了飞秒激光加工提供了一种可用于全光纤系统具有高重复刻写性的长周期光纤光栅来产生高阶OAM模式的思路。

English Abstract

目录

    /

    返回文章
    返回