搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析

李明亮 邓明晰 高广健

引用本文:
Citation:

复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析

李明亮, 邓明晰, 高广健

Influences of the interfacial properties on second-harmonic generation by primary circumferential ultrasonic guided wave propagation in composite tube

Li Ming-Liang, Deng Ming-Xi, Gao Guang-Jian
PDF
导出引用
  • 研究了复合圆管的管间界面特性对周向超声导波二次谐波发生效应所产生的影响.在二阶微扰近似条件下,将周向超声导波传播过程中的非线性效应视为其线性波动响应的一个二阶微扰.采用界面弹簧模型对复合圆管的管间界面特性进行描述.根据导波的模式展开分析方法,伴随基频周向超声导波传播所发生的二次谐波可视为由一系列二倍频周向导波模式叠加而成.管间界面特性的变化可从多个方面对二倍频周向导波模式的展开系数及声场产生影响,尤其是界面特性的变化所引起的周向超声导波相速度的改变,将显著地影响到二次谐波随传播周向角的积累增长程度.理论及数值分析结果表明,周向超声导波的二次谐波发生效应随管间界面特性的改变而发生非常敏感的变化,可将其用于准确定征复合圆管的管间界面性质.
    The influences of the interfacial properties on second-harmonic generation by primary circumferential ultrasonic guided wave (CUGW) propagation in a composite tube are investigated in this paper.Within a second-order perturbation approximation,the nonlinear effect of primary CUGW propagation may be treated as a second-order perturbation to its linear response.Due to the interfacial spring model,the properties of interface between the inner and outer circular tubes constituting the composite tube are characterized by the normal and tangential interfacial stiffness values.According to the technique of modal expansion analysis for waveguide excitation,the second-harmonic field of primary CUGW propagation can be decomposed into a series of double frequency CUGW modes.It is found that changes of the interfacial properties of composite tube will obviously influence the efficiency of second-harmonic generation by primary CUGW propagation.Specifically,for a given composite tube with a perfect interface,an appropriate fundamental and double frequency CUGW mode pair that satisfies the phase velocity matching condition can be chosen to enable the double frequency CUGW mode generated by the primary CUGW propagation to accumulate along the circumferential direction,and an obvious second-harmonic signal of primary CUGW propagation to be observed.When the changes of the interfacial properties of composite tube (versus the perfect interface with infinite interfacial stiffnesses) take place,the effect of second-harmonic generation by primary CUGW propagation will be influenced in the following aspects.Firstly, the changes of the interfacial properties in the case of perfect interface may provide different acoustic fields for the primary CUGW.This will influence the magnitude of the modal expansion coefficient of double frequency CUGW mode generated,because both the second-order bulk forcing source (due to the double frequency bulk driving force) and the second-order surface/interface forcing source (due to the quadratic term of expression of the first Piola-Kirchhoff stress tensor) in the governing equation of the double frequency CUGW are both proportional to the squared amplitude of the primary CUGW.Secondly,the second-order surface/interface forcing source in the said governing equation is directly associated with the interfacial stiffnesses.This will also lead to the change of the magnitude of the modal expansion coefficient of double frequency CUGW mode when the change of interfacial stiffnesses takes place.Thirdly,the change of the interfacial stiffnesses will influence the dispersion relation of CUGW propagation.The phase velocity matching conditions for the fundamental and double frequency CUGW mode pair,which are satisfied originally in the case of perfect interface,may not now be satisfied.This will remarkably influence the efficiency of second-harmonic generation by the primary CUGW propagation.It is found that when there is a clear difference between the phase velocities of the fundamental and double frequency CUGW mode pair (caused by the changes in the interfacial stiffnesses),the double frequency CUGW mode generated may not have a cumulative effect along the circumferential direction.In this case,the efficiency of second-harmonic generation by primary CUGW propagation will become more and more weak.Theoretical analyses and numerical simulations performed both demonstrate that the effect of second-harmonic generation by primary CUGW propagation is very sensitive to changes in the interfacial properties of composite tube, and that it can be used to accurately characterize the interfacial properties in composite tube structures.
      通信作者: 邓明晰, dengmx65@yahoo.com
    • 基金项目: 国家自然科学基金(批准号:11474361,11274388)资助的课题.
      Corresponding author: Deng Ming-Xi, dengmx65@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361, 11274388).
    [1]

    Gu J Z 2000 Shanghai Metals 22 16 (in Chinese) [顾建忠2000上海金属22 16]

    [2]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 2758

    [3]

    Zhang R, Wang M X 2000 Acta Phys. Sin. 49 7

    [4]

    Lu P, Wang Y J 2001 Acta Phys. Sin. 50 697 (in Chinese) [陆鹏, 王耀俊2001物理学报50 697]

    [5]

    Wang Y J 2004 Acta Acust. 29 97 (in Chinese) [王耀俊2004声学学报29 97]

    [6]

    Heller K, Jacobs L J, Qu J M 2000 NDT&E Int. 33 8

    [7]

    Rose J L 2002 J. Press Vessel Tech. 124 273

    [8]

    Zhang H L, Yin X C 2007 Chin. J. Solid Mech. 28 109 (in Chinese) [张慧玲, 尹晓春2007固体力学学报28 109]

    [9]

    Zhang H L, Yin X C 2007 Acta Mech. Solida Sinica 20 110

    [10]

    Zhang H L, Yin X C 2008 J. Vib. Eng. 21 471 (in Chinese) [张慧玲, 尹晓春2008振动工程学报21 471]

    [11]

    Gao G J, Deng M X, Li M L 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮2015物理学报64 224301]

    [12]

    Deng M X 2007 Acta Acust. 32 205 (in Chinese) [邓明晰2007声学学报32 205]

    [13]

    Deng M X, Wang P, Lú X F 2006 J. Phys. D: Appl. Phys. 39 3018

    [14]

    Gao G J, Deng M X, Li M L 2015 Acta Phys. Sin. 64 184303 (in Chinese) [高广健, 邓明晰, 李明亮2015物理学报64 184303]

    [15]

    Deng M X, Gao G J, Li M L 2015 Chin. Phys. Lett. 32 124305

    [16]

    Deng M X 1996 Acta Acust. 21 429 (in Chinese) [邓明晰1996声学学报21 429]

    [17]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [18]

    Hamilton M F, Blackstock D T 1998 Nonlinear Acoustics (New York: Academic Press) Chapter 9 and 10

    [19]

    Deng M X 2006 Nonlinear Lamb Waves in Solid Plates (Beijing: Science Press) pp12-40(in Chinese) [邓明晰2006固体板中的非线性兰姆波(北京: 科学出版社)第12–40页]

    [20]

    Auld B A 1973 Acoustic Fields and Waves in Solids Vol. Ⅱ (New York: John Wiley) pp151-162

    [21]

    Jia X 1997 J. Acoust. Soc. Am. 101 834

  • [1]

    Gu J Z 2000 Shanghai Metals 22 16 (in Chinese) [顾建忠2000上海金属22 16]

    [2]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 2758

    [3]

    Zhang R, Wang M X 2000 Acta Phys. Sin. 49 7

    [4]

    Lu P, Wang Y J 2001 Acta Phys. Sin. 50 697 (in Chinese) [陆鹏, 王耀俊2001物理学报50 697]

    [5]

    Wang Y J 2004 Acta Acust. 29 97 (in Chinese) [王耀俊2004声学学报29 97]

    [6]

    Heller K, Jacobs L J, Qu J M 2000 NDT&E Int. 33 8

    [7]

    Rose J L 2002 J. Press Vessel Tech. 124 273

    [8]

    Zhang H L, Yin X C 2007 Chin. J. Solid Mech. 28 109 (in Chinese) [张慧玲, 尹晓春2007固体力学学报28 109]

    [9]

    Zhang H L, Yin X C 2007 Acta Mech. Solida Sinica 20 110

    [10]

    Zhang H L, Yin X C 2008 J. Vib. Eng. 21 471 (in Chinese) [张慧玲, 尹晓春2008振动工程学报21 471]

    [11]

    Gao G J, Deng M X, Li M L 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮2015物理学报64 224301]

    [12]

    Deng M X 2007 Acta Acust. 32 205 (in Chinese) [邓明晰2007声学学报32 205]

    [13]

    Deng M X, Wang P, Lú X F 2006 J. Phys. D: Appl. Phys. 39 3018

    [14]

    Gao G J, Deng M X, Li M L 2015 Acta Phys. Sin. 64 184303 (in Chinese) [高广健, 邓明晰, 李明亮2015物理学报64 184303]

    [15]

    Deng M X, Gao G J, Li M L 2015 Chin. Phys. Lett. 32 124305

    [16]

    Deng M X 1996 Acta Acust. 21 429 (in Chinese) [邓明晰1996声学学报21 429]

    [17]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [18]

    Hamilton M F, Blackstock D T 1998 Nonlinear Acoustics (New York: Academic Press) Chapter 9 and 10

    [19]

    Deng M X 2006 Nonlinear Lamb Waves in Solid Plates (Beijing: Science Press) pp12-40(in Chinese) [邓明晰2006固体板中的非线性兰姆波(北京: 科学出版社)第12–40页]

    [20]

    Auld B A 1973 Acoustic Fields and Waves in Solids Vol. Ⅱ (New York: John Wiley) pp151-162

    [21]

    Jia X 1997 J. Acoust. Soc. Am. 101 834

  • [1] 张雨佳, 卢敏健, 李岩, 尉昊赟. 配体修饰的金纳米颗粒的二次谐波散射多极子分析. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220669
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [5] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [6] 施佳妤, 蓝尤钊. 类石墨烯结构二维层状碳化硅的非线性二次谐波特性的第一性原理研究. 物理学报, 2018, 67(21): 217803. doi: 10.7498/aps.67.20181337
    [7] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法. 物理学报, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [8] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 腔体双边二次电子倍增一阶与三阶模式瞬态特性对比. 物理学报, 2017, 66(20): 207901. doi: 10.7498/aps.66.207901
    [9] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析. 物理学报, 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [10] 高广健, 邓明晰, 李明亮, 刘畅. 管间界面特性对周向超声导波传播特性的影响. 物理学报, 2015, 64(22): 224301. doi: 10.7498/aps.64.224301
    [11] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [12] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [13] 杜宏伟, 彭 虎, 江朝晖, 冯焕清. 基于Fourier-Bessel级数的Bessel型超声场二次谐波近场特性研究. 物理学报, 2007, 56(11): 6496-6502. doi: 10.7498/aps.56.6496
    [14] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [15] 刘启明, 赵修建, 干福熹. Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析. 物理学报, 2000, 49(9): 1726-1730. doi: 10.7498/aps.49.1726
    [16] 刘家璐, 张廷庆, 李建军, 赵元富. BF2+注入多晶硅栅常规热退火氟迁移特性的二次离子质谱分析. 物理学报, 1997, 46(8): 1580-1584. doi: 10.7498/aps.46.1580
    [17] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [18] 王耀俊. 分子晶体萘中超声二次谐波的测量. 物理学报, 1985, 34(9): 1194-1198. doi: 10.7498/aps.34.1194
    [19] 陈正豪, 崔大复, 吕惠宾, 周岳亮. 在GaAs-Al界面上红外表面二次谐波的产生及其特性研究. 物理学报, 1984, 33(3): 428-433. doi: 10.7498/aps.33.428
    [20] 沈文达, 朱莳通. 激光等离子体波纹临界面的共振吸收和二次谐波产生. 物理学报, 1981, 30(7): 945-952. doi: 10.7498/aps.30.945
计量
  • 文章访问数:  2938
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析

    基金项目: 国家自然科学基金(批准号:11474361,11274388)资助的课题.

摘要: 研究了复合圆管的管间界面特性对周向超声导波二次谐波发生效应所产生的影响.在二阶微扰近似条件下,将周向超声导波传播过程中的非线性效应视为其线性波动响应的一个二阶微扰.采用界面弹簧模型对复合圆管的管间界面特性进行描述.根据导波的模式展开分析方法,伴随基频周向超声导波传播所发生的二次谐波可视为由一系列二倍频周向导波模式叠加而成.管间界面特性的变化可从多个方面对二倍频周向导波模式的展开系数及声场产生影响,尤其是界面特性的变化所引起的周向超声导波相速度的改变,将显著地影响到二次谐波随传播周向角的积累增长程度.理论及数值分析结果表明,周向超声导波的二次谐波发生效应随管间界面特性的改变而发生非常敏感的变化,可将其用于准确定征复合圆管的管间界面性质.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回