搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究

郭宏伟 刘然 王玲瑞 崔金星 宋波 王凯 刘冰冰 邹勃

引用本文:
Citation:

高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究

郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃

High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3

Guo Hong-Wei, Liu Ran, Wang Ling-Rui, Cui Jin-Xing, Song Bo, Wang Kai, Liu Bing-Bing, Zou Bo
PDF
导出引用
  • 近年来,随着有机-无机杂化钙钛矿太阳能电池的飞速发展,对此类材料基本物性的探索引起了科学家们的广泛关注.本文利用金刚石对顶砧装置对甲胺基碘化铅(CH3NH3PbI3)进行高压实验,研究了室温下压力诱导CH3NH3PbI3的结构变化以及压力对其光学性质的调控,实验最高压力为7 GPa.原位高压同步辐射X射线衍射实验结果显示,CH3NH3PbI3样品在0.3 GPa由四方相转变为正交相,在4 GPa左右开始非晶化.结合原位高压吸收和荧光光谱,分析了压力对CH3NH3PbI3带隙大小的调控作用.进一步利用原位高压拉曼光谱和红外光谱实验研究了CH3NH3PbI3晶体中有机阳离子(CH3NH3+)在高压下的行为.完全卸压后,样品恢复到加压前的初始状态.研究结果可为深入了解有机-无机杂化钙钛矿的光学性质和结构稳定性提供一些信息.
    Recent advance in highly efficient solar cells based on organic-inorganic hybrid perovskites has triggered intense research efforts to ascertain the fundamental properties of these materials. In this work, we utilize diamond anvil cell to investigate the pressure-induced structural and optical transformations in methylammonium lead iodide (CH3NH3PbI3) at pressures ranging from atmospheric pressure to 7 GPa at room temperature. The synchrotron X-ray diffraction experiment shows that the sample transforms from tetragonal (space group I4cm) to orthorhombic (space group Imm2) phase at 0.3 GPa and amorphizes above 4 GPa. Pressure dependence of the unit cell volume of CH3NH3PbI3 shows that the unit cell volume undergoes a sudden reduction at 0.3 GPa, which can prove the observed phase transition. We provide the high-pressure optical micrographs obtained from a diamond anvil cell. Upon compression, we can visually observe that the opaque black sample gradually transforms into a transparent red one above 4 GPa. We analyze the pressure dependence of the band gap energy based on the optical absorption and photoluminescence (PL) results. As pressure increases up to 0.25 GPa, the absorption edge and PL peak move to the longer wavelength region of 9 nm. However, abrupt blueshifts of the absorption edge and PL peak occur at 0.3 GPa, followed by a gradual blueshift up to 1 GPa, these phenomena correspond to the previously observed phase transitions. Phase transition increases the band gap energy of CH3NH3PbI3 as a result of reductions in symmetry and tilting of the[PbI6]4- octahedral. Upon further compression, the sample exhibits pressure-induced amorphization at about 4 GPa, which significantly affects its optical properties. Further high pressure Raman and infrared spectroscopy experiments illustrate the high pressure behavior of organic CH3NH3+ cations. Owing to the presence of hydrogen bonding between organic cations and the inorganic framework, all of the bending and rocking modes of CH3 and NH3 groups are gradually red-shifted with increasing pressure. The transition of NH stretching mode from blueshift to redshift as a result of the attractive interactions between hydrogen atoms and iodine atoms is gradually strengthened. Moreover, all the observed changes are fully reversible when the pressure is completely released. In situ high pressure studies provide essential information about the intrinsic properties and stabilities of organic-inorganic hybrid perovskites, which significantly affect the performances of perovskite solar cells.
      通信作者: 王凯, kaiwang@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:91227202,21673100,11204101)和长白山学者计划(批准号:2013007)资助的课题.
      Corresponding author: Wang Kai, kaiwang@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91227202, 21673100, 11204101) and the Changbai Mountain Scholars Program, China (Grant No. 2013007).
    [1]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese)[王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖2013物理学报62 058801]

    [2]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)[於黄忠2013物理学报62 027201]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese)[韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮2013物理学报62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476

    [7]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [9]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [10]

    Pathak S, Sakai N, Rivarola F W R, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffit J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J 2015 Chem. Mater. 27 8066

    [11]

    Hao F, Stoumpos C C, Cao D Y H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S Z 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Dai J, Zheng H G, Zhu C, Lu J F, Xu C X 2016 J. Mater. Chem. C 4 4408

    [14]

    Wozny S, Yang M J, Nardes A M, Mercado C C, Ferrere S, Reese M O, Zhou W L, Zhu K 2015 Chem. Mater. 27 4814

    [15]

    McMillan P F 2002 Nat. Mater. 1 19

    [16]

    Demazeau G 2002 J. Phys.:Condens. Matter 14 11031

    [17]

    Wang Y G, Lu X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S, Zhao Y S 2015 J. Am. Chem. Soc. 137 11144

    [18]

    Swainson I P, Tucker M G, Wilson D J, Winkler B, Milman V 2007 Chem. Mater. 19 2401

    [19]

    Wang L R, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [20]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Naeeruddin M K, Grätzel M, Angelis F D 2014 Nano Lett. 14 3608

    [21]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [22]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Chem. Chem. Phys. 16 19984

    [23]

    Park N 2013 J. Phys. Chem. Lett. 4 2423

    [24]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015物理学报64 038404]

    [25]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [26]

    Baikie T, Fang Y, Kadro J M 2013 J. Mater. Chem. A 1 5628

    [27]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373

    [28]

    Jiang S J, Fang Y N, Li R P, Xiao H, Crowley J, Wang C Y, White T J, GoddardIII W A, Wang Z W, Baikie T, Fang J Y 2016 Angew. Chem. Int. Ed. Engl. 55 6540

    [29]

    Ou T J, Yan J Y, Xiao C H, Shen W S, Liu C L, Liu X Z, Han Y H, Ma Y M, Gao C X 2016 Nanoscale 8 11426

    [30]

    Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, Karunadasa H I 2016 ACS Cent Sci. 2 201

    [31]

    Szafranski M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458

    [32]

    Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901

    [33]

    Hammersley A P, Svensson S O, HanflandM, Fitch A N, Hausermann D 1996 High Pressure Res. 14 235

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103

    [35]

    Foley B J, Marlowe D L, Sun K, Saidi W A, Scudiero L, Gupta M C, Choi J J 2015 Appl. Phys. Lett. 106 243904

    [36]

    Gottesman R, Gouda L, Kalanoor B S, Haltzi E, Tirosh S, Rosh-Hodesh E, Tischler Y, Zaban A 2015 J. Phys. Chem. Lett. 6 2332

    [37]

    Carpentier P, Lefebvre J, Jakubas R 1992 J. Phys.:Condens. Matter 4 2985

    [38]

    Lee J H, Bristowe N C, Bristowe P D, Cheetham A K 2015 Chem. Commun. 51 6434

    [39]

    Wang K, Liu J, Yang K, Liu B, Zou B 2014 J. Phys. Chem. C 118 18640

  • [1]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese)[王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖2013物理学报62 058801]

    [2]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)[於黄忠2013物理学报62 027201]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese)[韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮2013物理学报62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476

    [7]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [9]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [10]

    Pathak S, Sakai N, Rivarola F W R, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffit J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J 2015 Chem. Mater. 27 8066

    [11]

    Hao F, Stoumpos C C, Cao D Y H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S Z 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Dai J, Zheng H G, Zhu C, Lu J F, Xu C X 2016 J. Mater. Chem. C 4 4408

    [14]

    Wozny S, Yang M J, Nardes A M, Mercado C C, Ferrere S, Reese M O, Zhou W L, Zhu K 2015 Chem. Mater. 27 4814

    [15]

    McMillan P F 2002 Nat. Mater. 1 19

    [16]

    Demazeau G 2002 J. Phys.:Condens. Matter 14 11031

    [17]

    Wang Y G, Lu X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S, Zhao Y S 2015 J. Am. Chem. Soc. 137 11144

    [18]

    Swainson I P, Tucker M G, Wilson D J, Winkler B, Milman V 2007 Chem. Mater. 19 2401

    [19]

    Wang L R, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [20]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Naeeruddin M K, Grätzel M, Angelis F D 2014 Nano Lett. 14 3608

    [21]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [22]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Chem. Chem. Phys. 16 19984

    [23]

    Park N 2013 J. Phys. Chem. Lett. 4 2423

    [24]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015物理学报64 038404]

    [25]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [26]

    Baikie T, Fang Y, Kadro J M 2013 J. Mater. Chem. A 1 5628

    [27]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373

    [28]

    Jiang S J, Fang Y N, Li R P, Xiao H, Crowley J, Wang C Y, White T J, GoddardIII W A, Wang Z W, Baikie T, Fang J Y 2016 Angew. Chem. Int. Ed. Engl. 55 6540

    [29]

    Ou T J, Yan J Y, Xiao C H, Shen W S, Liu C L, Liu X Z, Han Y H, Ma Y M, Gao C X 2016 Nanoscale 8 11426

    [30]

    Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, Karunadasa H I 2016 ACS Cent Sci. 2 201

    [31]

    Szafranski M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458

    [32]

    Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901

    [33]

    Hammersley A P, Svensson S O, HanflandM, Fitch A N, Hausermann D 1996 High Pressure Res. 14 235

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103

    [35]

    Foley B J, Marlowe D L, Sun K, Saidi W A, Scudiero L, Gupta M C, Choi J J 2015 Appl. Phys. Lett. 106 243904

    [36]

    Gottesman R, Gouda L, Kalanoor B S, Haltzi E, Tirosh S, Rosh-Hodesh E, Tischler Y, Zaban A 2015 J. Phys. Chem. Lett. 6 2332

    [37]

    Carpentier P, Lefebvre J, Jakubas R 1992 J. Phys.:Condens. Matter 4 2985

    [38]

    Lee J H, Bristowe N C, Bristowe P D, Cheetham A K 2015 Chem. Commun. 51 6434

    [39]

    Wang K, Liu J, Yang K, Liu B, Zou B 2014 J. Phys. Chem. C 118 18640

  • [1] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [2] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [3] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [4] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [5] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [6] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [7] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化. 物理学报, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [8] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [9] 王小伍, 徐海红. 多元醇二元体系固-固相变机理的研究. 物理学报, 2014, 63(13): 136501. doi: 10.7498/aps.63.136501
    [10] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [11] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [13] 王小伍, 徐海红. 多元醇固—固相变机理的研究. 物理学报, 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [14] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [15] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [16] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [17] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [18] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响. 物理学报, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [19] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] 赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊. 非迭代冻结密度近似方法在计算氢键相互作用的合理性研究. 物理学报, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
计量
  • 文章访问数:  4055
  • PDF下载量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-09
  • 刊出日期:  2017-02-05

高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究

  • 1. 吉林大学超硬材料国家重点实验室, 长春 130012;
  • 2. 苏州大学材料与化学化工学部, 苏州 215123
  • 通信作者: 王凯, kaiwang@jlu.edu.cn
    基金项目: 国家自然科学基金(批准号:91227202,21673100,11204101)和长白山学者计划(批准号:2013007)资助的课题.

摘要: 近年来,随着有机-无机杂化钙钛矿太阳能电池的飞速发展,对此类材料基本物性的探索引起了科学家们的广泛关注.本文利用金刚石对顶砧装置对甲胺基碘化铅(CH3NH3PbI3)进行高压实验,研究了室温下压力诱导CH3NH3PbI3的结构变化以及压力对其光学性质的调控,实验最高压力为7 GPa.原位高压同步辐射X射线衍射实验结果显示,CH3NH3PbI3样品在0.3 GPa由四方相转变为正交相,在4 GPa左右开始非晶化.结合原位高压吸收和荧光光谱,分析了压力对CH3NH3PbI3带隙大小的调控作用.进一步利用原位高压拉曼光谱和红外光谱实验研究了CH3NH3PbI3晶体中有机阳离子(CH3NH3+)在高压下的行为.完全卸压后,样品恢复到加压前的初始状态.研究结果可为深入了解有机-无机杂化钙钛矿的光学性质和结构稳定性提供一些信息.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回