搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁诱导透明机制的压缩光场量子存储

邓瑞婕 闫智辉 贾晓军

引用本文:
Citation:

基于电磁诱导透明机制的压缩光场量子存储

邓瑞婕, 闫智辉, 贾晓军

Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light

Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun
PDF
导出引用
  • 光场的量子存储不仅是构建量子计算机的重要基础,而且是实现量子中继和远距离量子通信的核心部分.由于存在不可避免的光学损耗,光学参量放大器产生的压缩真空态光场将变为压缩热态光场,不再是最小不确定态.因此,压缩热态光场的量子存储是实现量子互联网的关键.在原子系综中利用电磁诱导透明机制能够实现量子态在光场正交分量和原子自旋波之间的相互映射,即受控量子存储.本文根据量子存储的保真度边界,研究了实现压缩热态光场量子存储的条件.量子存储的保真度边界是通过经典手段能够达到的最大保真度,当保真度大于该边界时,就实现了量子存储.通过数值计算分析了不同情况下压缩热态光场的量子存储保真度边界,以及存储保真度随存储效率的变化关系,得到了实现量子存储的条件,为连续变量量子存储实验设计提供了直接参考.
    Quantum memory of light is not only the building block of constructing large-scale quantum computer, but also the kernel component of quantum repeater for quantum networks, which makes long distance quantum communication come true. Due to the inevitable optical losses, squeezed vacuum generated from optical parametric amplifier becomes squeezed thermal state of light, which is no longer the minimum uncertainty state. Therefore quantum memory of squeezed thermal state of optical field is the key step towards the implementation of quantum internet. Atomic ensemble is one of ideal quantum memory media, as a result of high optical depth and good atomic coherence. Electromagnetically induced transparency (EIT) is one of mature approaches to quantum state mapping between non-classical optical fields and atomic spin waves. In atomic ensembles, the EIT can on-demand map quantum state between quadratures of light and spin waves of atomic ensemble, i.e., controlled quantum memory. Here the condition of quantum memory for squeezed thermal state of light is investigated according to the fidelity benchmark of quantum memory. The fidelity benchmark of quantum memory is the maximum fidelity which can be reached by classical methods, and it is quantum memory if the memory fidelity is higher than the fidelity benchmark of quantum memory. By numerically calculating the fidelity benchmark of quantum memory for different kinds of squeezed thermal states of light and the dependence of memory fidelity on the memory efficiency, we obtain the minimum memory efficiency which can realize quantum memory for squeezed thermal state of light. The quantum memory can be easily obtained by increasing squeezing parameter r. The thermal state fluctuation is sensitive to the realization of quantum memory. The required minimum memory efficiency is lower, when smaller thermal state fluctuation is employed in experiment by reducing the optical losses in optical parametric amplifier. On the other hand, quantum memory fidelity benchmark is high for small squeezing parameter and large optical depth, which requires high memory efficiency. And atomic memory efficiency can be increased by utilizing optical cavity to enhance the interaction between light and atom or atomic ensemble with high optical depth. For example, the fidelity benchmark is 0.80, when squeezing parameter r is 0.35 and thermal state fluctuation is 2.38 dB. Thus quantum memory can be realized if the memory efficiency is larger than 4.34%. Our work can provide the direct reference for experimental design of continuous variable quantum memory, quantum repeater, and quantum computer based on atomic ensembles.
      通信作者: 闫智辉, zhyan@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11322440,11474190,11304190)、霍英东教育基金、山西省自然科学基金(批准号:2014021001)、山西三晋学者项目和山西省回国留学人员科研资助项目资助的课题.
      Corresponding author: Yan Zhi-Hui, zhyan@sxu.edu.cn
    • Funds: Project supported by Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11322440, 11474190, 11304190), FOK Ying-dong Education Foundation, China, Natural Science Foundation of Shanxi Province, China (Grant No. 2014021001), Program for Sanjin Scholars of Shanxi Province, China, and Shanxi Scholarship Council of China.
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84777

    [2]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77513

    [3]

    Wu LA, Kimble H J, Hall J L, Wu H F 1986Phys. Rev. Lett. 57 2520

    [4]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese)[孙恒信, 刘奎, 张俊香, 郜江瑞2015物理学报64234210]

    [5]

    The LIGO Scientific Collaboration 2013 Nature Photon. 7613

    [6]

    Marino A M, Stroud C R 2006Phys. Rev. A 74 022315

    [7]

    Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A 2003Phys. Rev. Lett. 91 080404

    [8]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012Opt. Lett. 37 5178

    [9]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nature Commun. 42828

    [10]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282706

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763

    [12]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quantum Opt. 191(in Chinese)[邬志强, 周海军, 王雅君, 郑耀辉2013量子光学学报191]

    [13]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65044203(in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收2016物理学报65044203]

    [14]

    Kimble H J 2008Nature 453 1023

    [15]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414413

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 242350

    [17]

    Fleischhauer M, Lukin M D 2000Phys. Rev. Lett. 84 5094

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001Phys. Rev. Lett. 86 783

    [19]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409490

    [20]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nature Photon. 4218

    [21]

    Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quantum Opt. 18357(in Chinese)[孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海2012量子光学学报18357]

    [22]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9332

    [23]

    Yan Y, Li S J, Tian L, Wang H 2016Acta Phys. Sin. 65 014205 (in Chinese)[闫妍, 李淑静, 田龙, 王海2016物理学报65 014205]

    [24]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004Nature 432 482

    [25]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nature Commun. 2174

    [26]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473190

    [27]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005Phys. Rev. Lett. 95 060502

    [28]

    Hedges M P, Longdell J J, Li Y M, Sellars M J 2010Nature 465 1052

    [29]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015Phys. Rev. Lett. 114 090503

    [30]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008Phys. Rev. Lett. 100 093602

    [31]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008Phys. Rev. Lett. 100 093601

    [32]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nature Phys. 7 13

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802

    [34]

    Zhang J X, Xie C D, Peng K C 2005Chin. Phys. Lett. 22 3005

    [35]

    Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeika M, Ban M, Furusawa A 2005Phys. Rev. A 72 042304

    [36]

    Hammerer K, Wolf M M, Polzik E S, Cirac J I 2005Phys. Rev. Lett. 94 150503

    [37]

    Owari M, Plenio M B, Polzik E S, Serafini A, Wolf M M 2008New. J. Phys. 10 113014

    [38]

    Adesso G, Chiribella G 2008Phys. Rev. Lett. 100 170503

    [39]

    Ou Z Y 2008Phys. Rev. A 78 023819

    [40]

    Scutaru H 1998J. Phys. A 31 3659

    [41]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2010New J. Phys. 12 093032

  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84777

    [2]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77513

    [3]

    Wu LA, Kimble H J, Hall J L, Wu H F 1986Phys. Rev. Lett. 57 2520

    [4]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese)[孙恒信, 刘奎, 张俊香, 郜江瑞2015物理学报64234210]

    [5]

    The LIGO Scientific Collaboration 2013 Nature Photon. 7613

    [6]

    Marino A M, Stroud C R 2006Phys. Rev. A 74 022315

    [7]

    Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A 2003Phys. Rev. Lett. 91 080404

    [8]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012Opt. Lett. 37 5178

    [9]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nature Commun. 42828

    [10]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282706

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763

    [12]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quantum Opt. 191(in Chinese)[邬志强, 周海军, 王雅君, 郑耀辉2013量子光学学报191]

    [13]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65044203(in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收2016物理学报65044203]

    [14]

    Kimble H J 2008Nature 453 1023

    [15]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414413

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 242350

    [17]

    Fleischhauer M, Lukin M D 2000Phys. Rev. Lett. 84 5094

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001Phys. Rev. Lett. 86 783

    [19]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409490

    [20]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nature Photon. 4218

    [21]

    Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quantum Opt. 18357(in Chinese)[孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海2012量子光学学报18357]

    [22]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9332

    [23]

    Yan Y, Li S J, Tian L, Wang H 2016Acta Phys. Sin. 65 014205 (in Chinese)[闫妍, 李淑静, 田龙, 王海2016物理学报65 014205]

    [24]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004Nature 432 482

    [25]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nature Commun. 2174

    [26]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473190

    [27]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005Phys. Rev. Lett. 95 060502

    [28]

    Hedges M P, Longdell J J, Li Y M, Sellars M J 2010Nature 465 1052

    [29]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015Phys. Rev. Lett. 114 090503

    [30]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008Phys. Rev. Lett. 100 093602

    [31]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008Phys. Rev. Lett. 100 093601

    [32]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nature Phys. 7 13

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802

    [34]

    Zhang J X, Xie C D, Peng K C 2005Chin. Phys. Lett. 22 3005

    [35]

    Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeika M, Ban M, Furusawa A 2005Phys. Rev. A 72 042304

    [36]

    Hammerer K, Wolf M M, Polzik E S, Cirac J I 2005Phys. Rev. Lett. 94 150503

    [37]

    Owari M, Plenio M B, Polzik E S, Serafini A, Wolf M M 2008New. J. Phys. 10 113014

    [38]

    Adesso G, Chiribella G 2008Phys. Rev. Lett. 100 170503

    [39]

    Ou Z Y 2008Phys. Rev. A 78 023819

    [40]

    Scutaru H 1998J. Phys. A 31 3659

    [41]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2010New J. Phys. 12 093032

  • [1] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [2] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [3] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [4] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [5] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择. 物理学报, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [6] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [7] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [8] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [9] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [10] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [12] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [13] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响. 物理学报, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [14] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [15] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图 . 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [17] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [18] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [19] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
计量
  • 文章访问数:  3339
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-03
  • 修回日期:  2017-01-08
  • 刊出日期:  2017-04-05

基于电磁诱导透明机制的压缩光场量子存储

  • 1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学, 极端光学协同创新中心, 太原 030006
  • 通信作者: 闫智辉, zhyan@sxu.edu.cn
    基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11322440,11474190,11304190)、霍英东教育基金、山西省自然科学基金(批准号:2014021001)、山西三晋学者项目和山西省回国留学人员科研资助项目资助的课题.

摘要: 光场的量子存储不仅是构建量子计算机的重要基础,而且是实现量子中继和远距离量子通信的核心部分.由于存在不可避免的光学损耗,光学参量放大器产生的压缩真空态光场将变为压缩热态光场,不再是最小不确定态.因此,压缩热态光场的量子存储是实现量子互联网的关键.在原子系综中利用电磁诱导透明机制能够实现量子态在光场正交分量和原子自旋波之间的相互映射,即受控量子存储.本文根据量子存储的保真度边界,研究了实现压缩热态光场量子存储的条件.量子存储的保真度边界是通过经典手段能够达到的最大保真度,当保真度大于该边界时,就实现了量子存储.通过数值计算分析了不同情况下压缩热态光场的量子存储保真度边界,以及存储保真度随存储效率的变化关系,得到了实现量子存储的条件,为连续变量量子存储实验设计提供了直接参考.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回