搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究

李吉 刘伍明

引用本文:
Citation:

梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究

李吉, 刘伍明

Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field

Li Ji, Liu Wu-Ming
PDF
导出引用
  • 利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.
    Two-component Bose-Einstein condensate offers an ideal platform for investigating many intriguing topological defects due to the interplay between intraspecies and interspecies interactions. The recent realization of spin-orbit coupling in two-component Bose-Einstein condensate, owing to coupling between the spin and the centre-of-mass motion of the atom, provides possibly new opportunities to search for novel quantum states. In particular, the gradient magnetic field in the Bose-Einstein condensate has brought a new way to create topologically nontrivial structures including Dirac monopoles and quantum knots. Previous studies of the gradient magnetic field effect in the Bose-Einstein condensate mainly focused on the three-component case. However, it remains unclear how the gradient magnetic field affects the ground state configuration in the rotating two-component Bose-Einstein condensate with spin-orbit coupling. In this work, by using quasi two-dimensional Gross-Pitaevskii equations, we study the ground state structure of a rotating two-component Bose-Einstein condensate with spin-orbit coupling and gradient magnetic field. We concentrate on the effects of the spin-orbit coupling and the gradient magnetic field on the ground state. The numerical results show that increasing the strength of the spin-orbit coupling can induce a phase transition from skyrmion lattice to skyrmion chain in the presence of the gradient magnetic field. Unlike the study of skyrmion in rotating two-component Bose-Einstein condensate with only spin-orbit coupling, the skyrmion chain can occur under the isotropic spin-orbit coupling when the gradient magnetic field is considered. It is worth noting that the skyrmion chain here is arrayed along the diagonal direction. Next we examine the effect of the gradient magnetic field on spin-orbit coupled two-component Bose-Einstein condensate. For the case of weak spin-orbit coupling and the slow rotation, a phase transition from a single plane-wave to half-skyrmion is found through increasing magnetic field gradient strength. For the case of strong spin-orbit coupling and the fast rotation, the nature of the ground state is shown to support the formation of a hidden vortex as the gradient magnetic field is enhanced. These hidden vortices have no visible cores in density distributions but have phase singularities in phase distributions, which are arrayed along the diagonal direction. This result confirms a new method of creating the hidden vortices in the two-component Bose-Einstein condensate. These topological structures can be detected by using the time-of-flight absorption imaging technique. Our results illustrate that the gradient magnetic field not only provides an opportunity to explore the exotic topological structures in spin-orbit coupled spinor Bose-Einstein condensate, but also is crucial for realizing the phase transitions among different ground states. This work paves the way for the future exploring of topological defect and the corresponding dynamical stability in quantum systems subjected to a gradient magnetic field.
      通信作者: 李吉, liji2015@iphy.ac.cn
    • 基金项目: 国家重点研发计划量子调控与量子信息重点专项(批准号:2016YFA0301500)和国家自然科学基金(批准号:11434015,KZ201610005011)资助的课题.
      Corresponding author: Li Ji, liji2015@iphy.ac.cn
    • Funds: Project supported by the NKRDP, China (Grant No. 2016YFA0301500) and the National Natural Science Foundation of China (Grant Nos. 11434015, KZ201610005011).
    [1]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539

    [2]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498

    [3]

    Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926

    [4]

    Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402

    [5]

    Qu C L, Pitaevskii L P, Stringari S 2016 Phys. Rev. Lett. 116 160402

    [6]

    Williams J E, Holland M J 1999 Nature 401 568

    [7]

    hberg P, Santos L 2001 Phys. Rev. Lett. 86 2918

    [8]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406

    [9]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [10]

    Cipriani M, Nitta M 2013 Phys. Rev. Lett. 111 170401

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [12]

    Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401

    [13]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404

    [14]

    Lin Y J, Garca K J, Spielman I B 2011 Nature 471 83

    [15]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nature Phys. 10 314

    [16]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83

    [17]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nature Phys. 12 540

    [18]

    Ruseckas J, Juzelinas G, hberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404

    [19]

    Campbell D L, Juzelinas G, Spielman I B 2011 Phys. Rev. A 84 025602

    [20]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [21]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402

    [22]

    Anderson B M, Spielman I B, Juzelinas G 2013 Phys. Rev. Lett. 111 125301

    [23]

    Anderson B M, Juzelinas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301

    [24]

    Cheuk L M, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein1 M W 2012 Phys. Rev. Lett. 109 095302

    [25]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [26]

    Lan Z H, hberg P 2014 Phys. Rev. A 89 023630

    [27]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [28]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401

    [29]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [30]

    Yu Z Q 2013 Phys. Rev. A 87 051606

    [31]

    Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606

    [32]

    Li Y, Zhou X F, Wu C J 2016 Phys. Rev. A 93 033628

    [33]

    Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605

    [34]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401

    [35]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616

    [36]

    Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624

    [37]

    Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402

    [38]

    Zhang X F, Gao R S, Wang X, Dong R F, Liu T, Zhang S G 2013 Phys. Lett. A 377 1109

    [39]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

    [40]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301

    [41]

    Radić J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604

    [42]

    Fetter A L 2014 Phys. Rev. A 89 023629

    [43]

    Chen G P 2015 Acta Phys. Sin. 64 030302(in Chinese) [陈光平 2015 物理学报 64 030302]

    [44]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [45]

    Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [46]

    Ray M W, Ruokokoski E, Kandel S, Mttnen M, Hall D S 2014 Nature 505 657

    [47]

    Ray M W, Ruokokoski E, Tiurev K, Mttnen M, Hall D S 2015 Science 348 544

    [48]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Mttnen M 2016 Nature Phys. 12 478

    [49]

    Kawaguchi Y, Nitta M, Ueda M 2008 Phys. Rev. Lett. 100 180403

    [50]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633

    [51]

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305(in Chinese) [刘静思, 李吉, 刘伍明 2017 物理学报 66 130305]

    [52]

    Leanhardt A E, Grlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [53]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [54]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [55]

    Han W, Zhang S Y, Jin J J, Liu W M 2012 Phys. Rev. A 85 043626

    [56]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [57]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [58]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [59]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [60]

    Mithun T, Porsezian K, Dey B 2014 Phys. Rev. A 89 053625

    [61]

    Ruokokoski E, Huhtamki J A M, Mttnen M 2012 Phys. Rev. A 86 051607

    [62]

    Barnett R, Boyd G R, Galitski V 2012 Phys. Rev. Lett. 109 235308

    [63]

    Chen G J, Chen L, Zhang Y B 2016 New J. Phys. 18 063010

    [64]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302(in Chinese) [张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302]

    [65]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306(in Chinese) [刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306]

  • [1]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539

    [2]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E, Cornell E A 1999 Phys. Rev. Lett. 83 2498

    [3]

    Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926

    [4]

    Kasamatsu K, Tsubota M 2004 Phys. Rev. Lett. 93 100402

    [5]

    Qu C L, Pitaevskii L P, Stringari S 2016 Phys. Rev. Lett. 116 160402

    [6]

    Williams J E, Holland M J 1999 Nature 401 568

    [7]

    hberg P, Santos L 2001 Phys. Rev. Lett. 86 2918

    [8]

    Kasamatsu K, Tsubota M, Ueda M 2004 Phys. Rev. Lett. 93 250406

    [9]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403

    [10]

    Cipriani M, Nitta M 2013 Phys. Rev. Lett. 111 170401

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [12]

    Battye R A, Cooper N R, Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401

    [13]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. Lett. 88 090404

    [14]

    Lin Y J, Garca K J, Spielman I B 2011 Nature 471 83

    [15]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nature Phys. 10 314

    [16]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83

    [17]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nature Phys. 12 540

    [18]

    Ruseckas J, Juzelinas G, hberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404

    [19]

    Campbell D L, Juzelinas G, Spielman I B 2011 Phys. Rev. A 84 025602

    [20]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [21]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402

    [22]

    Anderson B M, Spielman I B, Juzelinas G 2013 Phys. Rev. Lett. 111 125301

    [23]

    Anderson B M, Juzelinas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301

    [24]

    Cheuk L M, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein1 M W 2012 Phys. Rev. Lett. 109 095302

    [25]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [26]

    Lan Z H, hberg P 2014 Phys. Rev. A 89 023630

    [27]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [28]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401

    [29]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [30]

    Yu Z Q 2013 Phys. Rev. A 87 051606

    [31]

    Bhat I A, Mithun T, Malomed B A, Porsezian K 2015 Phys. Rev. A 92 063606

    [32]

    Li Y, Zhou X F, Wu C J 2016 Phys. Rev. A 93 033628

    [33]

    Kato M, Zhang X F, Saito H 2017 Phys. Rev. A 95 043605

    [34]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401

    [35]

    Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616

    [36]

    Zhou X F, Zhou J, Wu C J 2011 Phys. Rev. A 84 063624

    [37]

    Sakaguchi H, Umeda K 2016 J. Phys. Soc. Jpn. 85 064402

    [38]

    Zhang X F, Gao R S, Wang X, Dong R F, Liu T, Zhang S G 2013 Phys. Lett. A 377 1109

    [39]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

    [40]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301

    [41]

    Radić J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604

    [42]

    Fetter A L 2014 Phys. Rev. A 89 023629

    [43]

    Chen G P 2015 Acta Phys. Sin. 64 030302(in Chinese) [陈光平 2015 物理学报 64 030302]

    [44]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602

    [45]

    Kennedy C J, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301

    [46]

    Ray M W, Ruokokoski E, Kandel S, Mttnen M, Hall D S 2014 Nature 505 657

    [47]

    Ray M W, Ruokokoski E, Tiurev K, Mttnen M, Hall D S 2015 Science 348 544

    [48]

    Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Mttnen M 2016 Nature Phys. 12 478

    [49]

    Kawaguchi Y, Nitta M, Ueda M 2008 Phys. Rev. Lett. 100 180403

    [50]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633

    [51]

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305(in Chinese) [刘静思, 李吉, 刘伍明 2017 物理学报 66 130305]

    [52]

    Leanhardt A E, Grlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 Phys. Rev. Lett. 89 190403

    [53]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336

    [54]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [55]

    Han W, Zhang S Y, Jin J J, Liu W M 2012 Phys. Rev. A 85 043626

    [56]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477

    [57]

    Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628

    [58]

    Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674

    [59]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [60]

    Mithun T, Porsezian K, Dey B 2014 Phys. Rev. A 89 053625

    [61]

    Ruokokoski E, Huhtamki J A M, Mttnen M 2012 Phys. Rev. A 86 051607

    [62]

    Barnett R, Boyd G R, Galitski V 2012 Phys. Rev. Lett. 109 235308

    [63]

    Chen G J, Chen L, Zhang Y B 2016 New J. Phys. 18 063010

    [64]

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302(in Chinese) [张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302]

    [65]

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306(in Chinese) [刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306]

  • [1] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220697
    [2] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [3] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220751
    [4] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [5] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [7] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [8] 刘静思, 李吉, 刘伍明. 具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构研究. 物理学报, 2017, 66(13): 130305. doi: 10.7498/aps.66.130305
    [9] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射. 物理学报, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [10] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [11] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [12] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [13] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [14] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [15] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [16] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [17] 於乾英, 张金仓, 贾蓉蓉, 敬 超, 曹世勋. 多自旋态离子Co替代诱导La2/3Ca1/3MnO3体系的输运反常. 物理学报, 2008, 57(1): 453-459. doi: 10.7498/aps.57.453
    [18] 胡跃辉, 阴生毅, 陈光华, 吴越颖, 周小明, 周健儿, 王 青, 张文理. MWECR CVD等离子体系统梯度磁场对沉积a-Si:H薄膜特性研究. 物理学报, 2004, 53(7): 2263-2269. doi: 10.7498/aps.53.2263
    [19] 傅美欢, 任中洲. 含自旋轨道耦合的三维各向同性谐振子的四类升降算符. 物理学报, 2004, 53(5): 1280-1283. doi: 10.7498/aps.53.1280
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  4330
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-04-09
  • 刊出日期:  2018-06-05

梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 中国科学院大学物理学院, 北京 100049
  • 通信作者: 李吉, liji2015@iphy.ac.cn
    基金项目: 国家重点研发计划量子调控与量子信息重点专项(批准号:2016YFA0301500)和国家自然科学基金(批准号:11434015,KZ201610005011)资助的课题.

摘要: 利用准二维Gross-Pitaevskii方程,研究了在梯度磁场中具有自旋-轨道耦合的旋转两分量玻色-爱因斯坦凝聚体的基态结构.探索了自旋-轨道耦合作用和梯度磁场对基态的影响.结果发现,在梯度磁场下,随着自旋-轨道耦合强度增大,基态结构由skyrmion格子逐渐过渡为skyrmion列.对于弱自旋-轨道耦合和小旋转频率情况,增大磁场梯度强度可导致基态由平面波相转变为half-skyrmion;对于强自旋-轨道耦合和大旋转频率情况,梯度磁场可诱导hidden涡旋的产生.梯度磁场、自旋-轨道耦合和旋转作为体系的调控参数,可用于控制不同基态相间的转化.

English Abstract

参考文献 (65)

目录

    /

    返回文章
    返回