搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

尹霄丽 郭翊麟 闫浩 崔小舟 常欢 田清华 吴国华 张琦 刘博 忻向军

引用本文:
Citation:

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军

Analysis of orbital angular momentum spectra of Hankel-Bessel beams in channels with oceanic turbulence

Yin Xiao-Li, Guo Yi-Lin, Yan Hao, Cui Xiao-Zhou, Chang Huan, Tian Qing-Hua, Wu Guo-Hua, Zhang Qi, Liu Bo, Xin Xiang-Jun
PDF
导出引用
  • 携带轨道角动量的汉克-贝塞尔(Hankel-Bessel,HB)光束具有无衍射和自聚焦特性,用来作为信息传输的载体有望增大信息传输容量.基于Rytov近似理论,推导得到了HB涡旋光束经过海洋水平弱湍流信道后的螺旋相位谱的解析表达式,并利用数值仿真方法研究了海洋湍流参数对轨道角动量模式探测概率的影响.结果表明,海洋湍流导致发射轨道角动量模式的探测概率下降,出现模式串扰和螺旋相位谱扩展.海洋湍流对HB涡旋光束的负面影响随着轨道角动量模式数、传输距离、温度方差耗散率的增加而增强,随湍流动能耗散率的增加而减弱.HB涡旋光束受以盐度波动驱动的海洋湍流的负面影响更大.另外,在弱湍流及几十米传输距离条件下,HB涡旋光束的传输性能要差于最佳束腰大小设置的拉盖尔-高斯涡旋光束.这些结果有望为海洋环境水下光通信链路的实现提供一定的参考价值.
    Beams with different-mode-number (l) orbital angular momenta (OAMs) are mutually orthogonal to each other, which makes it possible to enlarge the channel capacity in an OAM multiplexed underwater optical communication (UOC) system. Nevertheless, the implementation of this strategy is limited by oceanic turbulence. Hankel-Bessel (HB) vortex beams carrying OAM are relatively less affected by atmospheric turbulence due to their ability to propagate without changing the intensity profile (non-diffraction nature) and remarkable ability to be reconstructed after encountering an obstacle (self-healing mechanism). Consequently, HB vortex beams can be used as the carriers to increase the channel capacity of information transmission. In this paper, based on the Rytov approximation theory, the analytical expressions of OAM spectra for HB vortex beams under weak horizontal oceanic turbulent channels are derived. The influences of oceanic turbulence parameters on the OAM spectra of HB vortex beams are investigated via numerical calculations. The results indicate that oceanic turbulence leads to the decline of detection probability of transmitted OAM mode and the broadening of OAM spectra as well. Similarly, the spatial coherence length in oceanic turbulence decreases with increasing propagation distance and the dissipation rate of mean-squared temperature and with decreasing the dissipation rate of turbulent kinetic energy, which lead to the decline of detection probability of transmitted OAM mode for HB vortex beams. On the other hand, beams with larger OAM mode numbers each have a wider beam spreading after propagating in the turbulence, which results in the decrease of the detection probability for transmitted OAM modes of HB vortex beams. And the HB vortex beams are more affected by salinity fluctuation than by temperature fluctuations, which indicates that salinity fluctuations are much more effective than temperature fluctuations in determinating the effect of oceanic turbulence. In addition, for weak turbulence and a distance of several tens of meters, the transmission performance of HB vortex beams is worse than that of Laguerre-Gaussian vortex beams with the optimal waist setting. These results provide references for the realization of optical communication links in the marine environment.
      通信作者: 尹霄丽, yinxl@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575027,61471051,61575026)资助的课题.
      Corresponding author: Yin Xiao-Li, yinxl@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575027, 61471051, 61575026).
    [1]

    Baghdady J, Miller K, Osler S, Morgan K, Li W Z, Johnson E, Cochenour B 2016 SPIE Defense + Security Baltimore, United States, April 17-21, 2016 p98270G

    [2]

    Ren Y X, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G D, Cao Y W, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306

    [3]

    Doniec M, Detweiler C, Vasilescu I, Rus D 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems Taipei, Taiwan, October 18-22, 2010 p4017

    [4]

    Gabriel C, Khalighi A, Bourennane S, Lon P, Rigaud V 2012 Egu. General Assembly 14 2685

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Samuel D, Moshe T, Willner A E 2012 Nature Photon. 6 488

    [6]

    Baghdady J, Kelly J, Miller K, Morgan K, Li W Z, Johnson E 2016 OCEANS 2016 MTS/IEEE Monterey, United States, September 19-23, 2016 p1

    [7]

    Abderrahmen T, Carmelo R G, Angela D, Bienvenu N, Amine B S, Mourad Z, Andrew F 2016 Sci. Rep. 6 27674

    [8]

    Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J, Wu G H 2017 Chin. Phys. B 26 114207

    [9]

    Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M, Johnson E G 2016 Opt. Express 24 9794

    [10]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642

    [11]

    Viola S, Valyrakis M, Kelly A, Lavery M P 2016 Lasers and Electro-Optics IEEE San Jose, United States, June 5-10, 2016 pSW1F.3

    [12]

    Liu Z L, Chen J L, Zhao D M 2017 Appl. Opt. 56 3577

    [13]

    Cheng M J, Guo L X, Li J T, Zhang Y X 2017 IEEE Photon. J. 8 1

    [14]

    Wu G H, Tong C M, Cheng M J, Peng P 2016 Chin. Opt. Lett. 14 6

    [15]

    Zhu Y, Liu X J, Gao J, Zhang Y X, Zhao F S 2014 Opt. Express 22 7765

    [16]

    Vasara A, Turunen J, Friberg A T 1989 J. Opt. Soc. Am. A 6 1748

    [17]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932

    [18]

    Zhu Y, Zhang L C, Zhang Y X 2016 Chin. Opt. Lett. 14 54

    [19]

    Cheng M J, Guo L X, Zhang Y X 2016 Chin. J. Radio 31 737(in Chinese) [程明建, 郭立新, 张逸新 2016 电波科学学报 31 737]

    [20]

    Ke X Z, Chen J, Yang Y M 2014 Acta Phys. Sin. 63 150301(in Chinese) [柯熙政, 谌娟, 杨一明 2014 物理学报 63 150301]

    [21]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [22]

    Ata Y, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [23]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

  • [1]

    Baghdady J, Miller K, Osler S, Morgan K, Li W Z, Johnson E, Cochenour B 2016 SPIE Defense + Security Baltimore, United States, April 17-21, 2016 p98270G

    [2]

    Ren Y X, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G D, Cao Y W, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306

    [3]

    Doniec M, Detweiler C, Vasilescu I, Rus D 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems Taipei, Taiwan, October 18-22, 2010 p4017

    [4]

    Gabriel C, Khalighi A, Bourennane S, Lon P, Rigaud V 2012 Egu. General Assembly 14 2685

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Samuel D, Moshe T, Willner A E 2012 Nature Photon. 6 488

    [6]

    Baghdady J, Kelly J, Miller K, Morgan K, Li W Z, Johnson E 2016 OCEANS 2016 MTS/IEEE Monterey, United States, September 19-23, 2016 p1

    [7]

    Abderrahmen T, Carmelo R G, Angela D, Bienvenu N, Amine B S, Mourad Z, Andrew F 2016 Sci. Rep. 6 27674

    [8]

    Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J, Wu G H 2017 Chin. Phys. B 26 114207

    [9]

    Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M, Johnson E G 2016 Opt. Express 24 9794

    [10]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642

    [11]

    Viola S, Valyrakis M, Kelly A, Lavery M P 2016 Lasers and Electro-Optics IEEE San Jose, United States, June 5-10, 2016 pSW1F.3

    [12]

    Liu Z L, Chen J L, Zhao D M 2017 Appl. Opt. 56 3577

    [13]

    Cheng M J, Guo L X, Li J T, Zhang Y X 2017 IEEE Photon. J. 8 1

    [14]

    Wu G H, Tong C M, Cheng M J, Peng P 2016 Chin. Opt. Lett. 14 6

    [15]

    Zhu Y, Liu X J, Gao J, Zhang Y X, Zhao F S 2014 Opt. Express 22 7765

    [16]

    Vasara A, Turunen J, Friberg A T 1989 J. Opt. Soc. Am. A 6 1748

    [17]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932

    [18]

    Zhu Y, Zhang L C, Zhang Y X 2016 Chin. Opt. Lett. 14 54

    [19]

    Cheng M J, Guo L X, Zhang Y X 2016 Chin. J. Radio 31 737(in Chinese) [程明建, 郭立新, 张逸新 2016 电波科学学报 31 737]

    [20]

    Ke X Z, Chen J, Yang Y M 2014 Acta Phys. Sin. 63 150301(in Chinese) [柯熙政, 谌娟, 杨一明 2014 物理学报 63 150301]

    [21]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [22]

    Ata Y, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [23]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

  • [1] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [2] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [3] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [4] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [5] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [6] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [7] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [8] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [9] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [10] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [11] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [12] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [13] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [14] 齐晓庆, 高春清, 刘义东. 利用相位型衍射光栅生成能量按比例分布的多个螺旋光束的研究. 物理学报, 2010, 59(1): 264-270. doi: 10.7498/aps.59.264
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  3794
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-02-24
  • 刊出日期:  2018-06-05

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

  • 1. 北京邮电大学电子工程学院, 北京 100876;
  • 2. 北京邮电大学, 天地互联与融合北京市重点实验室, 北京 100876;
  • 3. 北京邮电大学理学院, 北京 100876;
  • 4. 南京信息工程大学物理与光电学院, 南京 210044
  • 通信作者: 尹霄丽, yinxl@bupt.edu.cn
    基金项目: 国家自然科学基金(批准号:61575027,61471051,61575026)资助的课题.

摘要: 携带轨道角动量的汉克-贝塞尔(Hankel-Bessel,HB)光束具有无衍射和自聚焦特性,用来作为信息传输的载体有望增大信息传输容量.基于Rytov近似理论,推导得到了HB涡旋光束经过海洋水平弱湍流信道后的螺旋相位谱的解析表达式,并利用数值仿真方法研究了海洋湍流参数对轨道角动量模式探测概率的影响.结果表明,海洋湍流导致发射轨道角动量模式的探测概率下降,出现模式串扰和螺旋相位谱扩展.海洋湍流对HB涡旋光束的负面影响随着轨道角动量模式数、传输距离、温度方差耗散率的增加而增强,随湍流动能耗散率的增加而减弱.HB涡旋光束受以盐度波动驱动的海洋湍流的负面影响更大.另外,在弱湍流及几十米传输距离条件下,HB涡旋光束的传输性能要差于最佳束腰大小设置的拉盖尔-高斯涡旋光束.这些结果有望为海洋环境水下光通信链路的实现提供一定的参考价值.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回