搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用薄靶方法测量低能电子致Al,Ti,Cu,Ag,Au元素K壳层电离截面与L壳层特征X射线产生截面

李博 李玲 朱敬军 林炜平 安竹

引用本文:
Citation:

采用薄靶方法测量低能电子致Al,Ti,Cu,Ag,Au元素K壳层电离截面与L壳层特征X射线产生截面

李博, 李玲, 朱敬军, 林炜平, 安竹

Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag and Au thin films by low-energy electron impact

Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu
PDF
导出引用
  • 本文使用5-27 keV能量范围内的单能电子束轰击薄碳衬底上的薄Al(Z=13), Ti(Z=22), Cu(Z=29), Ag(Z=47), Au(Z=79)靶,使用硅漂移型探测器(SDD)收集产生的特征X射线,测量了Al、Ti、Cu的K壳层电离截面以及Cu、Ag和Au的L壳层特征X射线的产生截面,并且使用蒙特卡罗PENELOPE程序对实验结果进行了修正。本文首次给出了Cu的L壳层特征X射线产生截面。与半相对论扭曲波玻恩近似(semi-relativistic distorted-wave Born approximation, DWBA)理论值相比,本文的大多数实验值在7%的范围内与理论值符合。研究表明,中重元素的L壳电离截面的理论计算以及相应的原子参数有待更精确地确定。
    Experimental determinations of K-shell ionization cross sections of Al, Ti, Cu and L-shell characteristic X-ray production cross sections of Cu, Ag and Au (Lα, Lb and Lꝩ subshells for Au) by electron impact at incident energies of 5-27 keV are presented. Thin films of the studied elements deposited on thin carbon substrates were employed as targets in the experiments. The thickness of the thin carbon substrate was 7 μg/cm2, and the targets and their thickness values were Al (5.5 μg/cm2), Ti (28 μg/cm2), Cu (35.5 μg/cm2), Ag (44 μg/cm2) and Au (44 μg/cm2), respectively. The target thickness values were checked by using Rutherford Backscattering Spectrometry (RBS). The electron beam was provided by a scanning electron microscope (KYKY-2800B). The characteristic X-rays produced were registered by a silicon drifted detector (XR-100SDD, Amptek), which has a C2 ultrathin window and can detect the low-energy X-rays down to boron Kα line (0.183 keV). The detector's efficiency was calibrated using the standard sources (55Fe, 57Co, 137Cs and 241Am) for X-ray energies larger than 3.3 keV and using the characteristic peak method (i.e., measuring characteristic X-ray spectra produced by 20 keV electron impact on various thick solid targets) for X-ray energies less than 3.3 keV. The experimental results were corrected by the Monte Carlo code PENELOPE for the effects of target structure and Faraday cup. Meanwhile, the electron escape rates from the Faraday cup and the signal pile-up effect were also considered. The results show that when the incident electron energy is low, the influences of electron energy loss and target thickness are significant. The thinner the targets are, the smaller the corrections are. Experimental uncertainties for K-shell ionization cross sections of Al, Ti and Cu are about 5.0%, 5.6% and 5.1%, respectively; experimental uncertainties for L-shell X-ray production cross sections for Cu and Ag are about 5.3% and 4.0%, and for Lα、Lb、Lꝩ of Au are about 6.1%, 8.9% and 11.0%, respectively. The experimental L-shell characteristic X-ray production cross sections of Cu are given for the first time. Compared to the theoretical values of the semi-relativistic distorted-wave Born approximation (DWBA), most of the experimental values in this paper are in good agreement within 7% deviation. The best agreement between the experimental results and the theoretical values is obtained for the K shell ionization cross sections of Al, and the deviation is less than 1.7% for the data where the incident energies are above 10 keV. The least consistency with the theoretical values is the experimental L shell characteristic X-ray production cross sections of Cu, with a deviation of about 5-22%. The comparison of the experimental L shell characteristic X-ray production cross sections of Cu (including Ga and As elements) with DWBA theory indicates that the theoretical calculation of L shell ionization cross sections of medium heavy elements and the corresponding atomic parameters (such as fluorescence yields and Coster-Kronig transition probabilities) need to be more accurately determined. According to the present results, the ionization cross sections or characteristic X-ray production cross sections measured by the thin target thin substrate, the thin target thick substrate and the thick target methods are equivalent within the uncertainties.
  • [1]

    Powell C J 1976 Rev. Mod. Phys. 48 1 33-47

    [2]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B:At. Mol. Opt. Phys. 49 065205

    [3]

    Born M 1926 Z. Physik 38 803-827

    [4]

    Truhlar D O, Rice J K, Kuppermann A, Trajmar S 1970 Phys. Rev. A 1 778-802

    [5]

    Shelton W N, Leherissey E S, Madison D H 1971 Phys. Rev. A 3 242-250

    [6]

    Madison D H, Sheiton W N 1973 Phys. Rev. A 7 499-513

    [7]

    Rainer H 1990 Phys. Lett. A 144 2 81-85

    [8]

    Bely O, Schmartz S B 1969 Astron. Astrophys.1 281-285

    [9]

    Sampson D H 1986 Phys. Rev. A 34 986-1006

    [10]

    Fontes C J 1993 Phys. Rev. A 47 1009-1022

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701

    [14]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102

    [15]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1981 Phys. Rev. A 24 72-78

    [16]

    Shima K, Okuda M, Suzuki E, Tsubota T, Mikumo T 1983 J. Appl. Phys.54 1202-1208

    [17]

    Llovet X, Merlet C, Salvat F 2000 J. Phys. B:At. Mol. Opt. Phys. 33 3761-3772

    [18]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys.41 105304

    [19]

    Moy A, Merlet C, Llovet X, Dugne O 2013 J. Phys. B:At. Mol. Opt. Phys.46 115202

    [20]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 EPL 118 13001

    [21]

    Liang S, Wu Y, Zhao Z, Xia X G, Ke Z X, Pan M, Wang B Y, Zhang P 2021 Radiat. Phys. Chem 180 109321

    [22]

    Merlet C, Llovet X, Fernandez-Varea J M 2006 Phys. Rev. A 73 062719

    [23]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708

    [24]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067-3069

    [25]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4001-4005

    [26]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem.134 71-82

    [27]

    Zhao J L, Bai S, An Z, Zhu J J, Tan W J, Liu M T 2020 Radiat. Phys. Chem. 171 108722

    [28]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710

    [29]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47-53

    [30]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702

    [31]

    Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res. B 506 15-22

    [32]

    Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J 2018 Nucl. Instrum. Methods Phys. Res. B 418 68-73

    [33]

    Liu B, Ding W, An Z, Zhu J J, Zhang Z, Li L, Lin W P 2021 Fusion Eng. Des.172 112751

    [34]

    Sabbatucci L, Scot V, Fernandez J E 2014 Radiat. Phys. Chem.104 372-375.

    [35]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau:OECD/NEA Data Bank)

    [36]

    Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rathkopf J, Scofield J 1991 Report UCRL-50400 30 Lawrence Livermore National Laboratory, Livermore, CA

    [37]

    Mei C S, Wu Y, Yuan Y, Chang C H, Qian Z C, Zhu J J, Moharram K 2016 J. Phys. B:At. Mol. Opt. Phys.49 245204

    [38]

    Silvina P L, Vasconcellos M A Z, Ruth H, Jorge C T 2012 Phys. Rev. A 86 042701

    [39]

    He F Q, Peng X F, Long X G, Luo Z M, An Z 1997 Nucl. Instrum. Methods Phys. Res. B129 445-450

    [40]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 Radiat. Phys. Chem. 122 66-72

    [41]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291-315

    [42]

    Wu Y, An Z, Liu M T, Duan Y M, Tang C H, Luo Z M 2004 J. Phys. B:At. Mol. Opt. Phys. 37 4527-4537

    [43]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006

    [44]

    Campos C S, Vasconcellos M A Z 2002 Phys. Rev. A 66 012719

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, doi: 10.7498/aps.71.20212041
    [3] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, doi: 10.7498/aps.71.20211582
    [4] 王国强, 张烁, 杨俊元, 许小可. 耦合不同年龄层接触模式的新冠肺炎传播模型. 物理学报, doi: 10.7498/aps.70.20201371
    [5] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, doi: 10.7498/aps.69.20200718
    [6] 李颖涵, 安竹, 朱敬军, 李玲. keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究. 物理学报, doi: 10.7498/aps.69.20200264
    [7] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, doi: 10.7498/aps.68.20191095
    [8] 钱宇瑞, 吴英, 杨夏童, 陈秋香, 尤俊栋, 王宝义, 况鹏, 张鹏. 8-9.5 keV正电子致Ti的K壳层电离截面的实验研究. 物理学报, doi: 10.7498/aps.67.20180666
    [9] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, doi: 10.7498/aps.63.244205
    [10] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析. 物理学报, doi: 10.7498/aps.62.022801
    [11] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.62.244401
    [12] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究 . 物理学报, doi: 10.7498/aps.61.228101
    [13] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.60.126401
    [14] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, doi: 10.7498/aps.58.2011
    [15] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, doi: 10.7498/aps.58.2843
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  218
  • PDF下载量:  8
  • 被引次数: 0
出版历程

采用薄靶方法测量低能电子致Al,Ti,Cu,Ag,Au元素K壳层电离截面与L壳层特征X射线产生截面

  • 四川大学原子核科学技术研究所, 辐射物理及技术教育部重点实验室, 成都 610064

摘要: 本文使用5-27 keV能量范围内的单能电子束轰击薄碳衬底上的薄Al(Z=13), Ti(Z=22), Cu(Z=29), Ag(Z=47), Au(Z=79)靶,使用硅漂移型探测器(SDD)收集产生的特征X射线,测量了Al、Ti、Cu的K壳层电离截面以及Cu、Ag和Au的L壳层特征X射线的产生截面,并且使用蒙特卡罗PENELOPE程序对实验结果进行了修正。本文首次给出了Cu的L壳层特征X射线产生截面。与半相对论扭曲波玻恩近似(semi-relativistic distorted-wave Born approximation, DWBA)理论值相比,本文的大多数实验值在7%的范围内与理论值符合。研究表明,中重元素的L壳电离截面的理论计算以及相应的原子参数有待更精确地确定。

English Abstract

目录

    /

    返回文章
    返回