搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器

张多多 刘小峰 邱建荣

引用本文:
Citation:

基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器

张多多, 刘小峰, 邱建荣

Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures

Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong
PDF
HTML
导出引用
  • 非线性光学作为现代光学的一门重要分支, 在各个领域都有着重要的研究意义和应用价值. 然而, 受限于材料固有的非线性极化率和与外来光场的有限作用长度, 其非线性光学响应很弱. 等离激元纳米结构可以将外来光场束缚在纳米结构周围, 在光谱共振局域空间内形成一个巨大的电磁场增强, 从而极大地促进光与物质的相互作用, 提高了非线性光学响应. 超快脉冲激光由于其优异的性能已经广泛应用于光通信、精密测量、生物医学、军用激光武器等重要领域, 虽然商用的激光器已经发展得非常成熟, 可以达到超高的峰值功率、超短的脉宽以及超高的重频, 但是在中远红外波段的超快脉冲研究仍然是一个缺口, 所以寻找一种性能优异的可饱和吸收体材料对于脉冲激光的发展具有重要的意义. 本文综述了基于贵金属和非贵金属的等离激元纳米结构在超快光开关和脉冲激光方面的应用进展. 很多宽禁带半导体, 通过掺杂可以表现出类似金属的性质, 由于掺杂可以形成自由载流子, 当其尺寸在纳米尺度时, 就会表现出局域表面等离激元共振的特性, 从而实现超快的非线性光学响应, 并且掺杂的载流子浓度不能达到金属载流子的浓度, 可以有效减小过高载流子引起的带间损耗. 通过泵浦探测和Z扫描测试发现, 这些等离激元纳米结构在红外波段表现出超快的非线性光学响应以及宽带可调的性质, 可以产生几百飞秒量级的脉冲激光, 表明它们在超快光子学领域有很大的应用前景. 最后总结了不同体系等离激元材料的优势和不足, 展望了未来的发展和需要改进的工作.
    Nonlinear optical (NLO) effects are ubiquitous in the interaction of light with different materials. However, the NLO responses of most materials are inherently weak due to the small NLO susceptibility and the limited interaction length with the incident light. In plasmonic nanostructures the optical field is confined near the surface of the structures, so that the electromagnetic field is greatly enhanced in a localized fashion by spectral resonance. This effect results in the enhancement of light-matter interaction and NLO response of the material. Ultrafast pulse lasers have been widely used in optical communication, precise measurement, biomedicine, military laser weapons and other important fields due to their excellent performances. Although commercial lasers become very matured, they can achieve ultra-high peak power and ultra-short pulse width and ultra-high repetition rate, but the ultra-fast pulses in the mid-to-far infrared band are seldom studied, so finding a saturable absorber material with excellent performance is of great significance for developing the pulsed lasers. In this paper, we review the recent research progress of the applications of exiton nanostructure in ultrafast optical switches and pulse lasers based on noble metal and non-noble metals. The metallic system mainly refers to gold and silver nanoparticles. For non-noble metals, we mainly introduce our researches of chalcogenide semiconductor, heavily doped oxide and titanium nitride. A variety of wide bandgap semiconductors can exhibit metal-like properties through doping. Since doping can form free carriers, when their size is reduced to a nanometer scale, they will show the characteristics of local surface plasmon resonance, thus realizing ultra-fast nonlinear optical response, and the concentration of doped carriers cannot reach the level of metal carriers, thus being able to effectively reduce the inter-band loss caused by excessively high carriers. Through pump probe detection and Z-scan testing, we found that these plasmonic nanostructures exhibit ultrafast NLO response in tunable resonance bandwidth, which has been utilized as a working material for developing the optical switch to generate the pulsed laser with duration down to a femtosecond range. These results take on their potential applications in ultrafast photonics. Finally, we make a comparison of the pros and cons among different plasmonic materials and present a perspective of the future development.
      通信作者: 刘小峰, xfliu@zju.edu.cn ; 邱建荣, qjr@zju.edu.cn
    • 基金项目: 国际重点研发计划(批准号: 2018YFB1107200)和国家自然科学基金(批准号: 61775192, 51772270)资助的课题
      Corresponding author: Liu Xiao-Feng, xfliu@zju.edu.cn ; Qiu Jian-Rong, qjr@zju.edu.cn
    • Funds: Project supported by the International Key R&D Project (Grant No. 2018YFB1107200) and the National Natural Science Foundation of China (Grant Nos. 61775192, 51772270)
    [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [3]

    Keller U 2003 Nature 424 831Google Scholar

    [4]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [5]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [6]

    Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar

    [7]

    Zewail A H 1988 Science 242 1645Google Scholar

    [8]

    Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar

    [9]

    Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar

    [10]

    Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar

    [11]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [12]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [13]

    Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar

    [14]

    Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar

    [15]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [16]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [17]

    Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar

    [18]

    Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar

    [19]

    Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar

    [20]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [21]

    Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar

    [22]

    Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar

    [23]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [24]

    Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar

    [25]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar

    [26]

    Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar

    [27]

    Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar

    [28]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [29]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [30]

    Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [31]

    Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [32]

    Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar

    [33]

    Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [34]

    Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar

    [35]

    Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [36]

    Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar

    [37]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [38]

    Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar

    [39]

    Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar

    [40]

    李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar

    Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar

    [41]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [42]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar

    [43]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [44]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar

    [45]

    徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar

    Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar

    [46]

    杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar

    Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar

    [47]

    王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar

    Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar

    [48]

    徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar

    Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar

    [49]

    Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar

    [50]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [51]

    Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar

    [52]

    Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar

    [53]

    郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205

    Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205

    [54]

    盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402

    Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402

    [55]

    Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar

    [56]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [57]

    Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar

    [58]

    Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar

    [59]

    Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar

    [60]

    Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar

    [61]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [62]

    Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar

    [63]

    Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar

    [64]

    Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar

    [65]

    Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar

    [66]

    Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar

    [67]

    Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar

    [68]

    Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar

    [69]

    Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [70]

    Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar

    [71]

    Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar

    [72]

    Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar

    [73]

    Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar

    [74]

    Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar

    [75]

    Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar

    [76]

    Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar

  • 图 1  锁模产生脉冲激光示意图[3]

    Fig. 1.  Schematic illustration of the mechanism of mode-locking[3].

    图 2  金属纳米颗粒中导电电子在外部电场作用下的集体振荡示意图[41]

    Fig. 2.  Schematic illustrating the collective oscillations of conduction electrons in response to an external electric field for nanoparticles[41].

    图 3  LSPR共振峰位随材料载流子浓度的变化[49]

    Fig. 3.  LSPR frequency dependence on free carrier density and doping constraints[49].

    图 4  金属纳米颗粒的光激发和弛豫 (a)—(d) 金属纳米颗粒在激光脉冲照射下的光激发和弛豫过程, 以及时间尺度的特征[42]

    Fig. 4.  Photoexcitation and relaxation of metallic nanoparticles: (a)−(d) Photoexcitation and subsequent relaxation processes following the illumination of a metal nanoparticle with a laser pulse, and characteristic timescales[42].

    图 5  二能级系统的能级结构和受激吸收过程

    Fig. 5.  Energy-level structure of a two-energy level system and the process of stimulated absorption.

    图 6  金纳米棒的吸收光谱和脉冲激光输出 (a) 金纳米棒的透射电子显微镜图, 插图是金纳米棒溶液的照片; (b) 金纳米棒的吸收光谱(400—3200 nm); (c) 时域有限差分方法对串联GNRs的LSPR特性的数值模拟; (d) Er3+:ZBLAN光纤激光器的装置示意图; (e) 波长可调的调Q脉冲输出光谱[62]

    Fig. 6.  Absorption spectrμm and pulse laser generation of Gold nanorods (GNRs): (a) Transmission electron microscope image, the inset of (a) shows the photograph of the GNRs solution; (b) absorption spectrum of GNRs from 400 to 3200 nm; (c) the finite-difference time-domain simulation results of the absorption cross section of one, two, three, and four GNRs concatenated; (d) experiment schematic of a tunable passively Q-switched Er3+:ZBLAN fiber laser using GNRs as the saturable absorber; (e) output spectrum of tunable passively Q-switched Er3+:ZBLAN fiber laser[62].

    图 7  在1064 nm实现调Q被动锁模 (a) 离子注入实验示意图; (b) Ag:SiO2的横截面透射电子显微镜图像, 银离子的通量为1.0 × 1017 cm-2, 其中下左图为选区电子衍射图像, 下右图为元素映射图像; (c) 调Q被动锁模装置图; (d)单脉冲序列(左图), 基频射频谱(右图)[64]

    Fig. 7.  Experimental preparation and characterization of Q-switched mode-locked pulses at 1064 nm: (a) Schematic diagram of the experimental process; (b) cross-sectional transmission electron microscope image of the Ag:SiO2 with Ag+ fluence of 1.0 × 1017 ions per cm2, the selected area electron diffraction image and element mapping image are shown as the left and right insets; (c) schematic diagram of Q-switched mode-locking operation; (d) the single pulse profile (left image) and the radio-frequency spectrum (right image)[64].

    图 8  金属氧化物中常见掺杂机制的示意图包含金属阳离子(橙色球体)和氧阴离子(红色球体)的基本晶格[66]

    Fig. 8.  Schematic representation of the common doping mechanisms in metal oxides relative to a basic lattice containing metal cations (orange spheres) and oxygen anions (red spheres)[66].

    图 9  Cu2–xS溶胶纳米晶的非线性光学性质和相应脉冲激光器的性能 (a) Cu2–xS纳米晶的吸收光谱; (b) Cu2–xS和Cu2S纳米颗粒在1300 nm处的Z扫描曲线; (c) Cu2–xS纳米晶薄膜的透过率和激光功率密度的关系; (d) 1550 nm锁模脉冲输出序列; (e) 脉冲的自相关谱; (f) 激光脉冲在基频的射频谱[67]

    Fig. 9.  Nonlinear properties of Cu2–xS nanocrystals and its ultrafast pulse generation: (a) Absorption spectrum of the synthesized nanocrystals; (b) typical Z-scan curves of Cu2–xS and Cu2S nanocrystals recorded at 1300 nm; (c) corresponding input power-dependent transmission; (d) mode-locking pulse train; (e) autocorrelation trace; (f) the radio-frequency optical spectrum at the fundamental frequency[67].

    图 10  ITO纳米颗粒在ENZ区域的光学非线性及超快瞬态光学响应 (a) ITO纳米颗粒的透射电子显微镜图, 插图为ITO溶胶纳米颗粒溶液和高分辨透射电子显微镜图; (b) 不同掺杂浓度的ITO纳米晶归一化消光光谱; (c) ITO纳米颗粒薄膜介电常数的实部与波长的关系; (d) ITO-12 PVA薄膜在1.3 μm处的Z扫描曲线, 其中作为对照, 给出了相同条件下的未掺杂的In2O3纳米晶薄膜的相应Z扫描曲线; (e) 不同抽运功率下, 旋涂于高纯石英片上的ITO-10纳米晶薄膜的瞬态吸收特性, 实线表示单次指数衰减函数的拟合结果[70]

    Fig. 10.  Nonlinear optical response and ultrafast transient optical response of the ITO nanocrystals in ENZ region: (a) Typical transmission electron microscope images of ITO nanocrystals, with an average diameter of about 9 nm, the inset shows a photograph of the colloidal solution of ITO nanocrystals and a high resolution transmission electron microscope image of a single ITO nanocrystals; (b) normalized optical extinction spectra of the ITO nanocrystals with different doping levels; (c) wavelength dependent real part of the permittivity of the spin-coated ITO nanocrystals thin films; (d) Z-scan trace of a PVA film containing ITO nanocrystals recorded at 1.3 μm, ITO-12 shows notable saturable absorption, as compared to the undoped In2O3; (e) transient bleaching dynamics of ITO-10 nanocrystals film (spin-coated on quartz slid) under different pump fluence. Solid line shows the fitting with a single exponential decay function[70].

    图 11  IZO纳米颗粒在中红外波段的调Q脉冲输出 (a) 输出脉冲激光装置图; (b) 调Q脉冲序列; (c) 光谱图, 其中插图是激光脉冲在基频的射频谱, 对应的信噪比为30 dB; (d) 单脉冲曲线[71]

    Fig. 11.  The Q-switching at mid-infrared region band based on IZO nanoparticles: (a) Schematic illustration of laser setup; (b) typical Q-switched pulse train; (c) optical spectrum; the inset is the radio frequency spectrum, indicating a signal-to-noise ratio of ~30 dB; (d) single pulse profile[71].

    图 12  二维MoO3纳米片的性质 (a) 原子力显微镜图; (b) 原始的MoO3纳米片和经过紫外光活化的等离激元MoO3纳米片分散液的紫外可见吸收光谱; (c) MoO3的透过率随光强的变化曲线; (d) 1 μm附近锁模光谱图; (e) 锁模脉冲序列; (f) 脉宽[72]

    Fig. 12.  Characterizations of 2D MoO3 nanosheets: (a) Atomic force microscope image; (b) VIS-NIR absorption spectra for the colloidal dispersions of pristine MoO3 nanosheets and plasmonic (photoactivated) MoO3 nanosheets; the inset is the corresponding photographs; (c) dependence of transmission as a function of input power for plasmonic 2D MoO3; (d) optical spectrum; (e) pulse train; (f) pulse duration[72].

    图 13  基于TiN纳米颗粒的锁模脉冲输出及调Q脉冲 (a) TiN PVA薄膜在1550 nm处的非线性透过率随输入脉冲通量的变化曲线(调制深度); (b) 1.5 μm附近的锁模光谱; (c) 锁模脉冲序列; (d) 自相关曲线(脉宽); (e) 1 μm附近的调Q光谱; (f) 调Q脉冲输出功率随抽运功率的变化曲线[74]

    Fig. 13.  Ultrafast pulse laser generation and Q-switched laser based on TiN: (a) Nonlinear transmittance curve of the TiN/PVA sample versus the input pulse fluence at 1550 nm; (b) optical spectrum; (c) pulse trains; (d) autocorrelation trace; (e) laser spectrum from the Q-switched laser at the maximum pumping power; (f) average output powers versus pumping power for lasing operation at 1064 nm[74].

    图 14  不同表面等离激元材料对应的LSPR波段

    Fig. 14.  Different plasmonic materials corresponding LSPR wavelength.

    表 1  不同表面等离激元材料体系的光开关和超快脉冲应用(ML, 锁模; OS, 调Q)

    Table 1.  Different plasmonic materials for optical switch and pulse lasers (ML, mode-locking; QS: Q switch).

    激光
    波段
    光开关材
    料体系
    激光器运
    行模式
    最短
    脉宽
    重频
    1.0 μmMoO3–x光纤(ML)130 ps17 MHz[72]
    Cu2–xS固体(ML)7.8 ps84.17 MHz[67]
    TiN固体(QS)0.25μs590 kHz[74]
    Ag固体(ML)27 ps6.5 GHz[64]
    1.5 μmCu2–xS光纤(ML)295 fs7.28 MHz[67]
    TiN光纤(ML)763 fs8.19 MHz[74]
    ITO光纤(ML)593 fs16.62 MHz[70]
    Au光纤(ML)12 ps34.7 MHz[75]
    Cu-Sn-S光纤(ML)923 fs4.99 MHz[76]
    2.0 μmIZO固体(QS)3.61 μs17.32 kHz[71]
    Au光纤(QS)2.4 μs100.5 kHz[63]
    2.8 μmCu2–xS光纤(QS)0.75 μs90.7 kHz[67]
    IZO固体(QS)0.56 μs157.63 kHz[71]
    Au固体(QS)533 ns53.1 kHz[62]
    3.6 μmIZO固体(QS)1.78 μs56.2 kHz[71]
    下载: 导出CSV
  • [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [3]

    Keller U 2003 Nature 424 831Google Scholar

    [4]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [5]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [6]

    Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar

    [7]

    Zewail A H 1988 Science 242 1645Google Scholar

    [8]

    Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar

    [9]

    Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar

    [10]

    Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar

    [11]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [12]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [13]

    Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar

    [14]

    Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar

    [15]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [16]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [17]

    Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar

    [18]

    Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar

    [19]

    Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar

    [20]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [21]

    Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar

    [22]

    Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar

    [23]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [24]

    Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar

    [25]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar

    [26]

    Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar

    [27]

    Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar

    [28]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [29]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [30]

    Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [31]

    Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [32]

    Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar

    [33]

    Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [34]

    Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar

    [35]

    Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [36]

    Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar

    [37]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [38]

    Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar

    [39]

    Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar

    [40]

    李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar

    Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar

    [41]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [42]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar

    [43]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [44]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar

    [45]

    徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar

    Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar

    [46]

    杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar

    Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar

    [47]

    王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar

    Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar

    [48]

    徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar

    Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar

    [49]

    Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar

    [50]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [51]

    Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar

    [52]

    Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar

    [53]

    郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205

    Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205

    [54]

    盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402

    Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402

    [55]

    Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar

    [56]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [57]

    Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar

    [58]

    Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar

    [59]

    Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar

    [60]

    Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar

    [61]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [62]

    Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar

    [63]

    Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar

    [64]

    Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar

    [65]

    Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar

    [66]

    Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar

    [67]

    Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar

    [68]

    Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar

    [69]

    Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [70]

    Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar

    [71]

    Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar

    [72]

    Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar

    [73]

    Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar

    [74]

    Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar

    [75]

    Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar

    [76]

    Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar

  • [1] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [4] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [5] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [6] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [8] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展. 物理学报, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [9] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [10] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [11] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [12] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [13] 陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯. LiNbO3晶体界面非线性表面波的研究. 物理学报, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [14] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [15] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [16] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [17] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [18] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [19] 傅正平, 林峰, 朱星. 一维金属光栅的光学反射吸收. 物理学报, 2011, 60(11): 114213. doi: 10.7498/aps.60.114213
    [20] 张琦锋, 侯士敏, 张耿民, 刘惟敏, 薛增泉, 吴锦雷. Ag-BaO薄膜在电场作用下的可见——近红外波段光学吸收特性. 物理学报, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
计量
  • 文章访问数:  8373
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-05-13
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-20

/

返回文章
返回