搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机铅碘钙钛矿太阳电池结构优化及光电性能计算

卢辉东 韩红静 刘杰

引用本文:
Citation:

有机铅碘钙钛矿太阳电池结构优化及光电性能计算

卢辉东, 韩红静, 刘杰

Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells

Lu Hui-Dong, Han Hong-Jing, Liu Jie
PDF
HTML
导出引用
  • 甲胺铅碘(CH3NH3PbI3 MAPbI3)和甲脒铅碘(CH(NH2)2PbI3 FAPbI3)是目前最常用于太阳电池研究的有机铅碘钙钛矿材料. 对于层状结构的钙钛矿太阳电池来说, 每层薄膜的光学性质和厚度都影响着电池的光电转换效率. 本文利用光学导纳法和严格耦合波分析法计算了金属氧化物透明导电薄膜掺锡氧化铟(In2O3:Sn)、掺氟氧化锡(SnO2:F), TiO2, MAPbI3和FAPbI3的吸收率和透射率, 分析了各层厚度以及器件结构对电池短路电流密度的影响. 结果表明: 对于FTO(ITO)/TiO2/MAPbI3结构, FTO薄膜的厚度在50—450 nm, ITO厚度在10—150 nm时对入射光波长在360—800 nm的平均透射率为85%, 对于FTO(ITO)/TiO2/FAPbI3结构, FTO和ITO薄膜的厚度分别在50—250 nm和10—150 nm时对入射光波长在360—840 nm的平均透射率分别为81.6%和78%. 在FTO和TiO2最优厚度下, MAPbI3和FAPbI3的厚度从300—1000 nm变化时, 对应太阳电池短路电流密度分别在21.9—23.7 mA·cm–2和23.0—24.4 mA·cm–2范围. 本文的研究对于设计和制备高转换效率的钙钛矿太阳电池具有指导意义.
    Methylamine lead iodide (CH3NH3PbI3 MAPbI3) and formamidine lead iodide (CH(NH2)2PbI3 FAPbI3) are the most commonly used organic lead iodine perovskite materials for solar cell research. For the perovskite solar cell with a layered structure, the optical properties and thickness of each layer affect the photoelectric conversion efficiency of the cell. In this paper, the optical admittance method and rigorous coupled wave analysis method are used to calculate the absorptivities and transmittances of metal oxide transparent conductive films for tin-doped indium oxide (In2O3:Sn), fluorine-doped tin oxide (SnO2:F), TiO2, MAPbI3 and FAPbI3. The influence of each layer thickness and device structure on the short-circuit current density of the cell are analyzed. It is shown that for the FTO(ITO)/TiO2/MAPbI3 structure, when the thickness of the FTO film is 50–450 nm and the thickness of the ITO film is 10–150 nm, the average transmittance for the 360–800 nm wavelength light is 85%. For the FTO(ITO)/TiO2/FAPbI3 structure, when the thickness of the FTO film and ITO film are 50–250 nm and 10–150 nm, respectively, the average values of the transmittance for the 360-840 nm wavelength light are 81.6% and 78%, respectively. Under the optimal thickness of FTO and TiO2, and the thickness of MAPbI3 and FAPbI3 are 300–1000 nm, the corresponding short-circuit current densities are in a range of 21.9–23.7 and 23.0–24.4 mA·cm–2, respectively. The band gap of MAPbI3 and FAPbI3 are 1.56 and 1.48 eV, for which the corresponding absorption cut-off wavelengths are 796 and 840 nm, respectively, indicating that FAPbI3 has a wider absorption spectrum than MAPbI3. In order to maximize the Jsc value of the organic lead iodine perovskite solar cell, the thickness range of each layer for MAPbI3 perovskite solar cell (FTO thickness is (80 ± 50) nm, ITO thickness is less than 120 nm, MAPbI3 thicknessis 300–600 nm) and for FAPbI3 perovskite solar cell (FTO thickness is (120 ± 50) nm, ITO thickness is less than 180 nm, FAPbI3 thickness is 300–600 nm) are given. The research results of this article have guiding significance in designing and preparing the perovskite solar cells with high conversion efficiency.
      通信作者: 卢辉东, 2015990047@qhu.edu.cn
    • 基金项目: 中盐金坛盐化有限责任公司(批准号: ZYJTJS201906)和上海航天科技创新项目(批准号: SAST2017-139)资助的课题
      Corresponding author: Lu Hui-Dong, 2015990047@qhu.edu.cn
    • Funds: Project supported by the Chinasalt Jintan Company of Limited Liability, China (Grant No. ZYJTJS201906) and the Shanghai Aerospace Science and Technology Innovation Program, China (Grant No. SAST2017-139)
    [1]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [2]

    Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar

    [3]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [4]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [5]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [6]

    Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar

    [7]

    Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propag. 17 585

    [9]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar

    [10]

    Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar

    [11]

    Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar

    [12]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [13]

    Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar

    [14]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar

    [17]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [18]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [19]

    Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar

    [20]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [21]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [22]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [23]

    张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar

    Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar

    [24]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar

    [25]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [26]

    Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar

    [27]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [28]

    Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar

    [29]

    Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [30]

    Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar

    [31]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752

    [32]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602

    [33]

    卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar

    Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar

    [34]

    Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071

    [35]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [36]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar

  • 图 1  (a)光导纳法和(b)严格耦合波分析法的计算过程图

    Fig. 1.  Calculation procedure of (a) the optical admittance method and (b) rigorous coupled-wave analysis method.

    图 2  (a)钙钛矿太阳电池结构示意图; (b) MAPbI3和FAPbI3的晶胞

    Fig. 2.  (a) Schematic diagram of perovskite solar cell structure; (b) crystal structure of the cubic MAPbI3 and FAPbI3.

    图 3  (a) MgF2, SnO2:F, In2O3:Sn, TiO2的折射率和消光系数; (b) FAPbI3和MAPbI3的折射率和消光系数

    Fig. 3.  (a) The optical constants of the MgF2, SnO2:F, In2O3:Sn and TiO2 used in the optical simulation; (b) FAPbI3 and MAPbI3 used in the optical simulation.

    图 4  (a) 文献[21, 29]中报道的由Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au组成的MAPbI3和FAPbI3太阳电池的光学模型; (b) 光学导纳法和严格耦合波分析法计算MAPbI3 = 400 nm的吸收率; (c) MAPbI3太阳电池各层吸收率和外量子效率; (d) FAPbI3和MAPbI3 = 590 nm的吸收率; (e) 外量子效率和对应的积分电流密度; (f) J-V曲线

    Fig. 4.  (a) Optical model constructed for a MAPbI3 and FAPbI3 solar cell consisting of Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au reported in Ref.[21, 29]; (b) calculation absorption coefficient of the optical admittance method and rigorous coupled-wave analysis method; (c) calculated A spectra of the component layers and EQE spectrum for theMAPbI3 solar cell; (d) absorption coefficient of FAPbI3 and MAPbI3 = 590 nm; (e) the integrated photocurrents calculated from the overlap integral of the EQE spectra with the AM1.5 G solar emission are also shown; (f) J-V curves.

    图 5  (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和MAPbI3以及(d) ITO和MAPbI3厚度变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随MAPbI3厚度变化

    Fig. 5.  Transmittance spectra of (a)FTO and (b)ITO; variations of short circuit current density with (c) FTO and MAPbI3, and (d) ITO and MAPbI3 thickness; (e) absorptance spectrum of the MAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with MAPbI3 thickness.

    图 6  (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和FAPbI3以及(d) ITO和FAPbI3厚度的变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随FAPbI3厚度变化

    Fig. 6.  Transmittance spectra of (a) FTO and (b) ITO; variations of short circuit current density with (c) FTO and FAPbI3 and (d) ITO and FAPbI3 thickness; (e) absorptance spectrum of the FAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with FAPbI3 thickness

  • [1]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [2]

    Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar

    [3]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [4]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [5]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [6]

    Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar

    [7]

    Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propag. 17 585

    [9]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar

    [10]

    Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar

    [11]

    Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar

    [12]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [13]

    Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar

    [14]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar

    [17]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [18]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [19]

    Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar

    [20]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [21]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [22]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [23]

    张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar

    Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar

    [24]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar

    [25]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [26]

    Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar

    [27]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [28]

    Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar

    [29]

    Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [30]

    Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar

    [31]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752

    [32]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602

    [33]

    卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar

    Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar

    [34]

    Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071

    [35]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [36]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究. 物理学报, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [8] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [9] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [10] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [11] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [12] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [13] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [17] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究. 物理学报, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [18] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [19] 孔伟金, 王书浩, 魏世杰, 云茂金, 张文飞, 王心洁, 张蒙蒙. 基于严格耦合波理论的宽光谱金属介质膜光栅衍射特性分析. 物理学报, 2011, 60(11): 114214. doi: 10.7498/aps.60.114214
    [20] 孔伟金, 云茂金, 孙 欣, 刘均海, 范正修, 邵建达. 基于严格耦合波理论的多层介质膜光栅衍射特性分析. 物理学报, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
计量
  • 文章访问数:  6505
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-03-29
  • 上网日期:  2021-08-09
  • 刊出日期:  2021-08-20

/

返回文章
返回