搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管

李雪 曹宝龙 王明昊 冯增勤 陈淑芬

引用本文:
Citation:

基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管

李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬

Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer

Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen
PDF
HTML
导出引用
  • 有机金属卤化钙钛矿作为发射体具有极高的色纯度和极低的成本, 但钙钛矿层普遍较差的形貌制约了器件的性能. 引入合适的聚合物可有效改善旋涂型钙钛矿薄膜的均匀性. 本文引入聚(4-苯乙烯磺酸盐) (PSS)改性的聚(3,4-乙撑二氧噻吩):PSS (PEDOT: PSS) 作为空穴注入层(HIL), 结合一步旋涂制备的三溴化铅甲基胺(MAPbBr3)和聚(环氧乙烷)(PEO)复合膜作为发光层, 制备了高效绿光钙钛矿发光二极管. 其中, PSS增加了PEDOT:PSS功函数, 降低了其与钙钛矿发光层间的注入势垒; 而掺杂PEO的钙钛矿膜致密且均匀, 覆盖率可以达到100%. 基于改性的空穴注入层和复合发光层, 我们最终获得了最大亮度为2476 cd·m–2、最大电流效率为7.6 cd·A–1的高效钙钛矿发光二极管.
    Appreciable progress of organometal halide perovskite materials has been achieved in recent years due to their controllable synthesis and excellent optoelectronic properties. And the potential uses of these perovskites in photovoltaics, light-emitting diodes (LEDs), photodetectors and lasers have been successfully demonstrated. Although organometal halide perovskites appear as emitters with extremely high color purity and low cost, the device performance is significantly limited by poor morphology of the perovskite layer. The addition of the polymer into the perovskite layer is a convenient and effective method to improve the homogeneity of the spin-coated perovskite film. In this work, we fabricate green perovskite light emitting diodes (PeLEDs) with poly(styrenesulfonate) (PSS)-modified poly(3,4-ethylenedioxythiophene):PSS (PEDOT:PSS) as the hole injection layer (HIL) and a single spin coating composite film consisting of methylammonium lead tribromide (MAPbBr3) and poly(ethylene oxide) (PEO) as the emissive layer. The PSS doping increases the work function of PEDOT:PSS and reduces the injection barrier between PEDOT:PSS HIL and MAPbBr3 perovskite, thus balancing the carriers within the PeLEDs. The PEO doping enables the MAPbBr3 to become a dense and uniform perovskite film with a ~100% coverage. With the above approaches, highly efficient PeLEDs with maximum luminance and current efficiency of 2476 cd·m–2 and 7.6 cd·A–1 are eventually acquired. This work provides a method of fabricating the high-coverage and high-efficiency PeLEDs.
      通信作者: 陈淑芬, iamsfchen@njupt.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0404501)、国家自然科学基金(批准号: 61274065)、江苏省杰出青年基金(批准号: BK20160039)和南京工程学院创新基金重大项目(批准号: CKJA201602)资助的课题
      Corresponding author: Chen Shu-Fen, iamsfchen@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the National Natural Science Foundation of China (Grant No. 61274065), the Science Fund for Distinguished Young Scholars of Jiangsu Province, China (Grant No. BK20160039), and the Major Projects of Innovation Fund of Nanjing Institute of Technology (Grant No. CKJA201602)
    [1]

    Yang W S, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [2]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [4]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N S, Lee L C, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [5]

    Yu J C, Kim D W, Kim D B, Jung E D, Park J H, Lee A Y, Lee B R, Nuzzo D D, Friend R H, Song M H 2016 Adv. Mater. 28 6906Google Scholar

    [6]

    Huang C F, Keshtov M L, Chen F C 2016 ACS Appl. Mater. Interfaces 8 27006Google Scholar

    [7]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Sessolo M, Gil E L, Longo G, Bolink H J 2016 Top. Curr. Chem. 374 1Google Scholar

    [10]

    Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend I H, Sadhanala A, Ogale S 2017 Adv. Mater. Interfaces. 4 1700562Google Scholar

    [11]

    Zhang X L, Wang W G, Xu B, Liu S, Dai H T, Bian D, Chen S M, Wang K, Sun X W 2017 Nano Energy 37 40Google Scholar

    [12]

    Yu J C, Kim D B, Jung E D, Lee B R, Song M H 2016 Nanoscale 8 7036Google Scholar

    [13]

    Wang Z, Cheng T, Wang F, Dai S, Tan Z 2016 Small 12 4412Google Scholar

    [14]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N A, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [15]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [16]

    Ji X, Peng X, Lei Y, Liu Z, Yang X 2017 Org. Electron. 43 167Google Scholar

    [17]

    Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong ZH, Gao C 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [18]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [19]

    Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S 2015 Nanoscale 7 18956Google Scholar

    [20]

    Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar

    [21]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [22]

    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [23]

    Chan W C, Maxwel D J, Gao X, Bailey R E, Han M, Nie S 2002 Curr. Opin. Biotechnol. 13 1340

    [24]

    Vengrenovich R D, Gudyma Y V, Yarema S V 2001 Semiconductors 35 1378Google Scholar

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [26]

    Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [27]

    Yu H T, Lu Y, Feng Z Q, Wu Y N, Liu Z W, Xia P F, Qian J, Chen Y F, Liu L H, Cao K, Chen S F, Huang W 2019 Nanoscale 11 9103Google Scholar

  • 图 1  (a) 掺杂和未掺杂PSS的PEDOT:PSS的UPS光谱; (b) PeLEDs能级示意图

    Fig. 1.  (a) UPS spectra of PSS-doped and pristine PEDOT:PSS; (b) schematic energy-level of PeLEDs.

    图 2  不同PSS与PEDOT:PSS体积比的PeLEDs的特性 (a)亮度-电压特性; (b) 电流密度-电压特性; (c) 电流效率-电压特性

    Fig. 2.  The characteristics of PeLEDs with varying volume ratio of PSS and PEDOT:PSS: (a) Luminance-voltage; (b) current density-voltage; (c) current efficiency-voltage.

    图 3  不同体积比的MAPbBr3:PEO薄膜的SEM形貌图 (a) 1∶0; (b) 1∶0.75; (c) 1∶1; (d) 1∶1.25

    Fig. 3.  The SEM images of the MAPbBr3 films with different MAPbBr3:PEO volume ratio: (a) 1∶0; (b) 1∶0.75; (c) 1∶1; (d) 1∶1.25.

    图 4  本征MAPbBr3钙钛矿和MAPbBr3:PEO(1∶1)钙钛矿薄膜的XRD. 图中Pe为MAPbBr3的简写

    Fig. 4.  The XRD of the perovskite films of pristine MAPbBr3 and MAPbBr3:PEO (1∶1). Here, Pe is the abbreviation of MAPbBr3.

    图 5  MAPbBr3和MAPbBr3:PEO (1∶1)复合薄膜的PL光谱

    Fig. 5.  Photoluminescence spectra of the MAPbBr3 and MAPbBr3:PEO (1∶1) composite thin films.

    图 6  (a) 使用了MAPbBr3:PEO的器件结构示意图; 不同MAPbBr3:PEO体积比钙钛矿所制备出发光器件的(b)亮度-电压, (c)电流密度-电压, (d)电流效率-电压和(e)电致发光光谱曲线

    Fig. 6.  (a) PeLED structure using MAPbBr3:PEO, and the (b) luminance, (c) current density-voltage, (d) current efficiency-voltage and (e) electroluminant curves of PeLEDs with varying volume ratio of MAPbBr3:PEO.

  • [1]

    Yang W S, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [2]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [4]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N S, Lee L C, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [5]

    Yu J C, Kim D W, Kim D B, Jung E D, Park J H, Lee A Y, Lee B R, Nuzzo D D, Friend R H, Song M H 2016 Adv. Mater. 28 6906Google Scholar

    [6]

    Huang C F, Keshtov M L, Chen F C 2016 ACS Appl. Mater. Interfaces 8 27006Google Scholar

    [7]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Sessolo M, Gil E L, Longo G, Bolink H J 2016 Top. Curr. Chem. 374 1Google Scholar

    [10]

    Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend I H, Sadhanala A, Ogale S 2017 Adv. Mater. Interfaces. 4 1700562Google Scholar

    [11]

    Zhang X L, Wang W G, Xu B, Liu S, Dai H T, Bian D, Chen S M, Wang K, Sun X W 2017 Nano Energy 37 40Google Scholar

    [12]

    Yu J C, Kim D B, Jung E D, Lee B R, Song M H 2016 Nanoscale 8 7036Google Scholar

    [13]

    Wang Z, Cheng T, Wang F, Dai S, Tan Z 2016 Small 12 4412Google Scholar

    [14]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N A, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [15]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [16]

    Ji X, Peng X, Lei Y, Liu Z, Yang X 2017 Org. Electron. 43 167Google Scholar

    [17]

    Chen P, Xiong Z, Wu X, Shao M, Ma X, Xiong ZH, Gao C 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [18]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [19]

    Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S 2015 Nanoscale 7 18956Google Scholar

    [20]

    Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar

    [21]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [22]

    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [23]

    Chan W C, Maxwel D J, Gao X, Bailey R E, Han M, Nie S 2002 Curr. Opin. Biotechnol. 13 1340

    [24]

    Vengrenovich R D, Gudyma Y V, Yarema S V 2001 Semiconductors 35 1378Google Scholar

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [26]

    Zhang X Y, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [27]

    Yu H T, Lu Y, Feng Z Q, Wu Y N, Liu Z W, Xia P F, Qian J, Chen Y F, Liu L H, Cao K, Chen S F, Huang W 2019 Nanoscale 11 9103Google Scholar

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [4] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [5] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [6] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [7] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [10] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [11] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [12] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [13] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [14] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [15] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [16] 李海宏, 刘文, 刘德胜. 理论计算中电势能零点的选取对电荷注入的影响. 物理学报, 2011, 60(9): 097201. doi: 10.7498/aps.60.097201
    [17] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  4519
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 修回日期:  2020-09-21
  • 上网日期:  2021-02-04
  • 刊出日期:  2021-02-20

/

返回文章
返回