搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石氮-空位色心的温度传感

林豪彬 张少春 董杨 郑瑜 陈向东 孙方稳

引用本文:
Citation:

基于金刚石氮-空位色心的温度传感

林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳

Temperature sensing with nitrogen vacancy center in diamond

Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen
PDF
HTML
导出引用
  • 在各种物理量中, 温度是最直观和最普遍的量. 温度的剧烈变化通常意味着物体的物理性质出现波动, 因此在各个领域中温度往往是重要的指标. 随着科学技术的发展, 许多领域研究和应用的尺度越来越小, 然而在小于10 μm的空间尺度内还没有通用的温度测量方法. 除了空间分辨率的要求, 传感器在测量过程中不应该对被测对象有巨大影响, 金刚石氮-空位(nitrogen vacancy, NV)色心是一种稳定的发光缺陷, 通过对其能谱和电子自旋量子态的测量, 可以获得其附近温度、电磁场等物理量的信息. 由于金刚石的化学特性稳定和热导率高, 可以进行纳米尺度的非破坏性测量. 它对细胞无毒, 也可以用于生命领域的研究. 此外, 根据金刚石的特性, NV色心可以与光纤、扫描显微镜等技术结合, 实现不同场景中的温度测量. 本文将介绍金刚石NV色心的温度特性、测温原理及其在相关领域的应用.
    Temperature is the most intuitive and widespread in various physical quantities. Violent changes in temperature usually implies the appearing of fluctuations in physical properties of an object. Therefore, temperature is often an important indicator. With the development of science and technology, the scales in many fields are being more and more miniaturized. However, there are no mature temperature measurement systems in the case where the spatial scale is less than 10 μm. In addition to the requirement for spatial resolution, the sensor ought to exert no dramatic influence on the object to be measured. The nitrogen vacancy (NV) center in diamond is a stable luminescence defect. The measurements of its spectrum and spin state can be used to obtain the information about physical quantities near the color center, such as temperature and electro-magnetic field. Owing to its stable chemical properties and high thermal conductivity, the NV center can be applied to the noninvasive detection for nano-scale researches. It can also be used in the life field because it is non-toxic to cells. Moreover, combined with different techniques, such as optical fiber, scanning thermal microscopy, NV center can be used to measure the local temperatures in different scenarios. This review focuses on the temperature properties, the method of measuring temperature, and relevant applications of NV centers.
      通信作者: 孙方稳, fwsun@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304504)、国家自然科学基金(批准号: 91850102, 12005218)和河北省杰出青年科学基金(批准号: F2019516002)资助的课题
      Corresponding author: Sun Fang-Wen, fwsun@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304504), the National Natural Science Foundation of China (Grant Nos. 91850102, 12005218), and the Science Fund for Distinguished Young Scholars of Heibei Province, China (Grant No. F2019516002).
    [1]

    van Oort E, Manson N B, Glasbeek M 1988 J. Phys. C: Solid State Phys. 21 4385Google Scholar

    [2]

    Gruber A 1997 Science 276 2012Google Scholar

    [3]

    Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A, Wrachtrup J 2004 Phys. Rev. Lett. 93 130501Google Scholar

    [4]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [5]

    Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F, Wrachtrup J 2009 New J. Phys. 11 013017Google Scholar

    [6]

    Childress L, Hanson R 2013 MRS Bull. 38 134Google Scholar

    [7]

    Chen X, Zou C, Gong Z, Dong C, Guo G, Sun F 2015 Light Sci. Appl. 4 e230Google Scholar

    [8]

    Han K Y, Kim S K, Eggeling C, Hell S W 2010 Nano Lett. 10 3199Google Scholar

    [9]

    Arroyo-Camejo S, Adam M P, Besbes M, Hugonin J P, Jacques V, Greffet J J, Roch J F, Hell S W, Treussart F 2013 ACS Nano 7 10912Google Scholar

    [10]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644Google Scholar

    [11]

    Dolde F, Fedder H, Doherty M W, Nbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [13]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [14]

    Chen X D, Dong C H, Sun F W, Zou C L, Cui J M, Han Z F, Guo G C 2011 Appl. Phys. Lett. 99 161903Google Scholar

    [15]

    Hayashi T, Fukuda N, Uchiyama S, Inada N 2015 PLoS One 10 e0117677Google Scholar

    [16]

    Jaque D, del Rosal B, Rodrguez E M, Maestro L M, Haro-Gonzlez P, Sol J G 2014 Nanomedicine 9 1047Google Scholar

    [17]

    Somero G N 1995 Annu. Rev. Physiol. 57 43Google Scholar

    [18]

    Suzuki M, Tseeb V, Oyama K, Ishiwata S I 2007 Biophys. J. 92 2Google Scholar

    [19]

    Zohar O, Ikeda M, Shinagawa H, Inoue H, Nakamura H, Elbaum D, Alkon D L, Yoshioka T 1998 Biophys. J. 74 82Google Scholar

    [20]

    Astakhov V P, Outeiro J 2019 Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling (Cham: Springer International Publishing) pp1–47

    [21]

    Shi L, Dames C, Lukes J R, Reddy P, Duda J, Cahill D G, Lee J, Marconnet A, Goodson K E, Bahk J H, Shakouri A, Prasher R S, Felts J, King W P, Han B, Bischof J C 2015 Nanoscale and Microscale Thermophys. Eng. 19 127Google Scholar

    [22]

    Brites C D S, Balabhadra S, Carlos L D 2019 Adv. Opt. Mater. 7 1801239Google Scholar

    [23]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar

    [24]

    Li C C, Gong M, Chen X D, Li S, Zhao B W, Dong Y, Guo G C, Sun F W 2017 Diamond Relat. Mater. 74 119Google Scholar

    [25]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [26]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [27]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [28]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [29]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [30]

    Fedotov I V, Blakley S, Serebryannikov E E, Safronov N A, Velichansky V L, Scully M O, Zheltikov A M 2014 Appl. Phys. Lett. 105 261109Google Scholar

    [31]

    Kraus H, Soltamov V A, Fuchs F, Simin D, Sperlich A, Baranov P G, Astakhov G V, Dyakonov V 2015 Sci. Rep. 4 5303Google Scholar

    [32]

    Plakhotnik T, Aman H, Chang H C 2015 Nanotechnology 26 245501Google Scholar

    [33]

    Laraoui A, Aycock-Rizzo H, Gao Y, Lu X, Riedo E, Meriles C A 2015 Nat. Commun. 6 8954Google Scholar

    [34]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [35]

    Wojciechowski A M, Karadas M, Osterkamp C, Jankuhn S, Meijer J, Jelezko F, Huck A, Andersen U L 2018 Appl. Phys. Lett. 113 013502Google Scholar

    [36]

    Tzeng Y K, Tsai P C, Liu H Y, Chen O Y, Hsu H, Yee F G, Chang M S, Chang H C 2015 Nano Lett. 15 3945Google Scholar

    [37]

    Wang J, Feng F, Zhang J, Chen J, Zheng Z, Guo L, Zhang W, Song X, Guo G, Fan L, Zou C, Lou L, Zhu W, Wang G 2015 Phys. Rev. B 91 155404Google Scholar

    [38]

    Konzelmann P, Rendler T, Bergholm V, Zappe A, Pfannenstill V, Garsi M, Ziem F, Niethammer M, Widmann M, Lee S Y, Neumann P, Wrachtrup J 2018 New J. Phys. 20 123013Google Scholar

    [39]

    Plakhotnik T, Doherty M W, Cole J H, Chapman R, Manson N B 2014 Nano Lett. 14 4989Google Scholar

    [40]

    Zhang S C, Li S, Du B, Dong Y, Zheng Y, Lin H B, Zhao B W, Zhu W, Wang G Z, Chen X D, Guo G C, Sun F W 2019 Opt. Mater. Express 9 4634Google Scholar

    [41]

    Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar

    [42]

    Liu C F, Leong W H, Xia K, Feng X, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2021 National Science Review 8 nwaa194Google Scholar

    [43]

    Hayashi K, Matsuzaki Y, Taniguchi T, Shimo-Oka T, Nakamura I, Onoda S, Ohshima T, Morishita H, Fujiwara M, Saito S, Mizuochi N 2018 Phys. Rev. Appl. 10 034009Google Scholar

    [44]

    Vetrone F, Naccache R, Zamarrn A, Juarranz de la Fuente A, Sanz-Rodrguez F, Martinez Maestro L, Martn Rodriguez E, Jaque D, Garca Sol J, Capobianco J A 2010 ACS Nano 4 3254Google Scholar

    [45]

    Ermakova Y G, Lanin A A, Fedotov I V, Roshchin M, Kelmanson I V, Kulik D, Bogdanova Y A, Shokhina A G, Bilan D S, Staroverov D B, Balaban P M, Fedotov A B, Sidorov-Biryukov D A, Nikitin E S, Zheltikov A M, Belousov V V 2017 Nat. Commun. 8 15362Google Scholar

    [46]

    Yukawa H, Fujiwara M, Kobayashi K, Kumon Y, Miyaji K, Nishimura Y, Oshimi K, Umehara Y, Teki Y, Iwasaki T, Hatano M, Hashimoto H, Baba Y 2020 Nanoscale Adv. 2 1859Google Scholar

    [47]

    Simpson D A, Morrisroe E, McCoey J M, Lombard A H, Mendis D C, Treussart F, Hall L T, Petrou S, Hollenberg L C L 2017 ACS Nano 11 12077Google Scholar

    [48]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Sci. Adv. 6 eaba9636Google Scholar

    [49]

    Tsai P C, Epperla C P, Huang J S, Chen O Y, Wu C C, Chang H C 2017 Angew.Chem. Int. Ed. 56 3025Google Scholar

    [50]

    Mamaluy D, Gao X 2015 Appl. Phys. Lett. 106 193503Google Scholar

    [51]

    Yue Y, Wang X 2012 Nano Rev. 3 11586Google Scholar

    [52]

    Foy C, Zhang L, Trusheim M E, Bagnall K R, Walsh M, Wang E N, Englund D R 2020 ACS Appl. Mater. Interfaces 12 26525Google Scholar

    [53]

    Andrich P, Li J, Liu X, Heremans F J, Nealey P F, Awschalom D D 2018 Nano Lett. 18 4684Google Scholar

    [54]

    Zhang S C, Dong Y, Du B, Lin H B, Li S, Zhu W, Wang G Z, Chen X D, Guo G C, Sun F W 2021 Rev. Sci. Instrum. 92 044904Google Scholar

    [55]

    Tetienne J P, Lombard A, Simpson D A, Ritchie C, Lu J, Mulvaney P, Hollenberg L C L 2016 Nano Lett. 16 326Google Scholar

  • 图 1  不同温度零场劈裂. 横坐标为施加的微波频率, 纵坐标为归一化的荧光强度, 两条曲线代表不同的温度[13]

    Fig. 1.  Zero-field splitting with different temperatures. The horizontal coordinate is the applied microwave frequency, while the vertical coordinate is the normalized fluorescence intensity[13].

    图 2  光学探测磁共振谱和零声子线随温度的变化[14]

    Fig. 2.  Temperature dependent ODMR and zero-phonon line[14].

    图 3  三点快速测温法. 根据图中的3个点—f1, f2, f3拟合出1个完整的ODMR曲线. 前提是整个ODMR曲线的形状变化不大[36]

    Fig. 3.  Three-point fast thermometry. A complete ODMR curve can be fitted according to the three points in the figure—f1, f2, f3[36]

    图 4  利用自旋操作消除磁场相位的影响提高温度的灵敏度. 图(b)中的$ \pi/2 $用于产生叠加态, 3个$ \pi $脉冲用于改变相位的符号, 去除磁相位的影响[28]

    Fig. 4.  Spin operation is used to improve the temperature sensitivity by removing the effect of the magnetic field. The $ \pi/2 $ pulse in the panel (b) is used to generate the superposition state, and three $ \pi $ pulses are used to change the sign of the phase and remove the effect of the magnetic phase[28]

    图 5  各种体系的温度灵敏度与尺寸大小. 横坐标为传感器尺寸, 纵坐标为温度灵敏度[29]

    Fig. 5.  Temperature sensitivity versus size for various systems. The horizontal coordinate is the sensor size and the vertical coordinate is the temperature sensitivity[29].

    图 6  细胞内测温[29] (a)共聚焦下的荧光图, 虚线部分是细胞膜, 白色叉的部分表示金纳米颗粒的位置, 用来加热细胞. 圆圈表示纳米金刚石的位置. 旁边的颜色条是荧光的计数率. (b)不同金纳米颗粒的荧光条件下, 金刚石的温度差

    Fig. 6.  Intracellular thermometry[29]. (a) Fluorescence with confocal microscopy. The dashed part shows the cell membrane. The cross shows the position of gold nanoparticles, which is used to heat the cell. The circle shows the position of nanodiamond. The color bar next to it shows the count rate of fluorescence. (b) Temperature difference of diamond under different fluorescence conditions of gold nanoparticles

    图 7  一体化细胞测温[48] (a)线虫示意图; (b)测量的样品室, 集成了微波、NV色心和细胞生活环境; (c)下半幅图为药物刺激下的温度变化反应, 上半幅图为对应的荧光强度; (d) 对照组

    Fig. 7.  Integrated cellular thermometry[48]: (a) Schematic diagram of Caenorhabditis elegans worms; (b) sample chamber: integrated microwave, NV color center and cell living environment; (c) the lower half shows the temperature change response to drug stimulation, and the upper half shows the corresponding fluorescence intensity; (d) the control

    图 8  利用金刚石控制细胞的存活[49] (a)绿色的是蛋白质, 红色的是与金纳米颗粒混合的荧光纳米金刚石; (b)利用功率为330 μW的594 nm激光照射6 s后产生的结果: 细胞的膜隧道纳米管破裂了

    Fig. 8.  Using diamond to control cell survival[49]: (a) The green is protein and the red is fluorescent nanodiamond mixed with gold nanoparticles; (b) obtained results after a 594 nm laser irradiation at a power of 330 μW for 6 s: the membrane tunneling nanotubes of the cell ruptured

    图 9  NV色心对材料的温度和磁场进行表征[52] (a)测量装置示意图, 插图的红色小点为纳米金刚石; (b)氮化镓高电子迁移率晶体管成像示意图; (c) 高分辨率磁场测量(功率为290 mW); (d), (e) 功率为1和1.73 W下沟道阻挡层的温度分布

    Fig. 9.  Characterizing the temperature and magnetic field of the material with NV center[52]: (a) Schematic diagram of the measurement device, and the red dots in the inset are nanodiamonds; (b) imaging schematic of a gallium nitride high-electron mobility transistor; (c) high-resolution magnetic field measurement (290 mW); (d), (e) temperature distribution of the channel stop at different powers of 1 and 1.73 W

    图 10  利用PDMS进行局部测温[53] (a)纳米金刚石转移到PDMS上的微纳加工工艺; (b)通过ODMR拟合提取出温度信息, 并对温度进行重建之后的温度分布图

    Fig. 10.  Local temperature measurement with PDMS[53]: (a) Processing of nanodiamond transferred to PDMS; (b) temperature distribution after extracting the temperature information by ODMR fitting and reconstructing the temperature

    图 11  利用光纤传感对芯片温度分布进行测量[54] (a)测量的系统, 结合了锁相放大系统与光纤系统; (b)色心传感装置示意图, 红色的螺旋线表示微波天线; (c), (d)芯片未通电与通电时的温度分布图; (e)对应于图(c)和图(d)的红色虚线测量值

    Fig. 11.  Chip temperature distribution is measured using fiber optic sensing[54]: (a) System of measurement, combining the phase-locked amplification system with the fiber optic system; (b) schematic diagram of the color center sensing device, with the red spiral lines indicating the microwave antenna; (c), (d) temperature distribution of the chip when it is powered off and on; (e) corresponds to the red dashed line measurements in panel (c) and (d)

    图 12  对材料热导率进行测量[33] (a)实验装置, 电流沿着AFM的悬梁臂, 通过加热悬梁臂间接加热粘在上面的金刚石色心. 色心发出的荧光通过一个高数值孔径的显微镜收集. (b)与不同介质接触后金刚石的温度, 横坐标为加热的温度, 纵坐标为金刚石的温度

    Fig. 12.  Measuring the thermal conductivity of materials[33]. (a) Experimental setup, where current is flowing along the cantilever arm of the AFM and indirectly heats a diamond color center attached to it by heating the cantilever arm. The fluorescence emitted from NV center is collected through a microscope in a high numerical aperture. (b) Temperature of the diamond contact with different mediums. The horizontal coordinate is the temperature of heating and the vertical coordinate is the temperature of the diamond

    表 1  NV色心的测量灵敏度

    Table 1.  Measurement sensitivity with NV color centers.

    温度灵敏度/$({\rm{mK} }\cdot{ {\rm{Hz}^{-1/2} } })$ 方法 样品 NV色心浓度或者碳含量 参考文献
    0.43 利用自旋锁相结合ODMR 块状 0.1—1 × 106 (99.99% ${ }^{12} {\rm{C}}$) [35]
    0.76 增加NV色心的浓度 块状 2.84 × 106 [43]
    1.6 借助磁场消磁测量温度 块状 0.15 × 106 [40]
    5 对自旋能级进行相干操控 块状 99.995% ${ }^{12} {\rm{C}}$ [28]
    9 对自旋能级进行相干操控 块状 99.99% ${ }^{12}{\rm{ C}}$ [29]
    10 对自旋能级进行相干操控 块状 1.1% 13C [27]
    10.1 利用多脉冲进行相干操控 块状 1.1% 13C [37]
    11 利用居里温度下磁场的改变推算出温度 100 nm 500个NV [41]
    0.076 利用居里温度下磁场的改变推算出温度 金刚石立柱 单个NV [42]
    130 对自旋能级进行相干操控 50 nm 无相关数据 [28]
    300 NV色心电子态的超精细结构 50 nm 100个NV [32]
    下载: 导出CSV
  • [1]

    van Oort E, Manson N B, Glasbeek M 1988 J. Phys. C: Solid State Phys. 21 4385Google Scholar

    [2]

    Gruber A 1997 Science 276 2012Google Scholar

    [3]

    Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A, Wrachtrup J 2004 Phys. Rev. Lett. 93 130501Google Scholar

    [4]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [5]

    Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F, Wrachtrup J 2009 New J. Phys. 11 013017Google Scholar

    [6]

    Childress L, Hanson R 2013 MRS Bull. 38 134Google Scholar

    [7]

    Chen X, Zou C, Gong Z, Dong C, Guo G, Sun F 2015 Light Sci. Appl. 4 e230Google Scholar

    [8]

    Han K Y, Kim S K, Eggeling C, Hell S W 2010 Nano Lett. 10 3199Google Scholar

    [9]

    Arroyo-Camejo S, Adam M P, Besbes M, Hugonin J P, Jacques V, Greffet J J, Roch J F, Hell S W, Treussart F 2013 ACS Nano 7 10912Google Scholar

    [10]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644Google Scholar

    [11]

    Dolde F, Fedder H, Doherty M W, Nbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [13]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [14]

    Chen X D, Dong C H, Sun F W, Zou C L, Cui J M, Han Z F, Guo G C 2011 Appl. Phys. Lett. 99 161903Google Scholar

    [15]

    Hayashi T, Fukuda N, Uchiyama S, Inada N 2015 PLoS One 10 e0117677Google Scholar

    [16]

    Jaque D, del Rosal B, Rodrguez E M, Maestro L M, Haro-Gonzlez P, Sol J G 2014 Nanomedicine 9 1047Google Scholar

    [17]

    Somero G N 1995 Annu. Rev. Physiol. 57 43Google Scholar

    [18]

    Suzuki M, Tseeb V, Oyama K, Ishiwata S I 2007 Biophys. J. 92 2Google Scholar

    [19]

    Zohar O, Ikeda M, Shinagawa H, Inoue H, Nakamura H, Elbaum D, Alkon D L, Yoshioka T 1998 Biophys. J. 74 82Google Scholar

    [20]

    Astakhov V P, Outeiro J 2019 Importance of Temperature in Metal Cutting and Its Proper Measurement/Modeling (Cham: Springer International Publishing) pp1–47

    [21]

    Shi L, Dames C, Lukes J R, Reddy P, Duda J, Cahill D G, Lee J, Marconnet A, Goodson K E, Bahk J H, Shakouri A, Prasher R S, Felts J, King W P, Han B, Bischof J C 2015 Nanoscale and Microscale Thermophys. Eng. 19 127Google Scholar

    [22]

    Brites C D S, Balabhadra S, Carlos L D 2019 Adv. Opt. Mater. 7 1801239Google Scholar

    [23]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar

    [24]

    Li C C, Gong M, Chen X D, Li S, Zhao B W, Dong Y, Guo G C, Sun F W 2017 Diamond Relat. Mater. 74 119Google Scholar

    [25]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [26]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [27]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [28]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [29]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [30]

    Fedotov I V, Blakley S, Serebryannikov E E, Safronov N A, Velichansky V L, Scully M O, Zheltikov A M 2014 Appl. Phys. Lett. 105 261109Google Scholar

    [31]

    Kraus H, Soltamov V A, Fuchs F, Simin D, Sperlich A, Baranov P G, Astakhov G V, Dyakonov V 2015 Sci. Rep. 4 5303Google Scholar

    [32]

    Plakhotnik T, Aman H, Chang H C 2015 Nanotechnology 26 245501Google Scholar

    [33]

    Laraoui A, Aycock-Rizzo H, Gao Y, Lu X, Riedo E, Meriles C A 2015 Nat. Commun. 6 8954Google Scholar

    [34]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [35]

    Wojciechowski A M, Karadas M, Osterkamp C, Jankuhn S, Meijer J, Jelezko F, Huck A, Andersen U L 2018 Appl. Phys. Lett. 113 013502Google Scholar

    [36]

    Tzeng Y K, Tsai P C, Liu H Y, Chen O Y, Hsu H, Yee F G, Chang M S, Chang H C 2015 Nano Lett. 15 3945Google Scholar

    [37]

    Wang J, Feng F, Zhang J, Chen J, Zheng Z, Guo L, Zhang W, Song X, Guo G, Fan L, Zou C, Lou L, Zhu W, Wang G 2015 Phys. Rev. B 91 155404Google Scholar

    [38]

    Konzelmann P, Rendler T, Bergholm V, Zappe A, Pfannenstill V, Garsi M, Ziem F, Niethammer M, Widmann M, Lee S Y, Neumann P, Wrachtrup J 2018 New J. Phys. 20 123013Google Scholar

    [39]

    Plakhotnik T, Doherty M W, Cole J H, Chapman R, Manson N B 2014 Nano Lett. 14 4989Google Scholar

    [40]

    Zhang S C, Li S, Du B, Dong Y, Zheng Y, Lin H B, Zhao B W, Zhu W, Wang G Z, Chen X D, Guo G C, Sun F W 2019 Opt. Mater. Express 9 4634Google Scholar

    [41]

    Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar

    [42]

    Liu C F, Leong W H, Xia K, Feng X, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2021 National Science Review 8 nwaa194Google Scholar

    [43]

    Hayashi K, Matsuzaki Y, Taniguchi T, Shimo-Oka T, Nakamura I, Onoda S, Ohshima T, Morishita H, Fujiwara M, Saito S, Mizuochi N 2018 Phys. Rev. Appl. 10 034009Google Scholar

    [44]

    Vetrone F, Naccache R, Zamarrn A, Juarranz de la Fuente A, Sanz-Rodrguez F, Martinez Maestro L, Martn Rodriguez E, Jaque D, Garca Sol J, Capobianco J A 2010 ACS Nano 4 3254Google Scholar

    [45]

    Ermakova Y G, Lanin A A, Fedotov I V, Roshchin M, Kelmanson I V, Kulik D, Bogdanova Y A, Shokhina A G, Bilan D S, Staroverov D B, Balaban P M, Fedotov A B, Sidorov-Biryukov D A, Nikitin E S, Zheltikov A M, Belousov V V 2017 Nat. Commun. 8 15362Google Scholar

    [46]

    Yukawa H, Fujiwara M, Kobayashi K, Kumon Y, Miyaji K, Nishimura Y, Oshimi K, Umehara Y, Teki Y, Iwasaki T, Hatano M, Hashimoto H, Baba Y 2020 Nanoscale Adv. 2 1859Google Scholar

    [47]

    Simpson D A, Morrisroe E, McCoey J M, Lombard A H, Mendis D C, Treussart F, Hall L T, Petrou S, Hollenberg L C L 2017 ACS Nano 11 12077Google Scholar

    [48]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Sci. Adv. 6 eaba9636Google Scholar

    [49]

    Tsai P C, Epperla C P, Huang J S, Chen O Y, Wu C C, Chang H C 2017 Angew.Chem. Int. Ed. 56 3025Google Scholar

    [50]

    Mamaluy D, Gao X 2015 Appl. Phys. Lett. 106 193503Google Scholar

    [51]

    Yue Y, Wang X 2012 Nano Rev. 3 11586Google Scholar

    [52]

    Foy C, Zhang L, Trusheim M E, Bagnall K R, Walsh M, Wang E N, Englund D R 2020 ACS Appl. Mater. Interfaces 12 26525Google Scholar

    [53]

    Andrich P, Li J, Liu X, Heremans F J, Nealey P F, Awschalom D D 2018 Nano Lett. 18 4684Google Scholar

    [54]

    Zhang S C, Dong Y, Du B, Lin H B, Li S, Zhu W, Wang G Z, Chen X D, Guo G C, Sun F W 2021 Rev. Sci. Instrum. 92 044904Google Scholar

    [55]

    Tetienne J P, Lombard A, Simpson D A, Ritchie C, Lu J, Mulvaney P, Hollenberg L C L 2016 Nano Lett. 16 326Google Scholar

  • [1] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [2] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [3] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [7] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [8] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石NV色心的温度传感. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211822
    [9] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测. 物理学报, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [12] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [13] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [14] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [15] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [16] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [17] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [18] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [19] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  5634
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-10-26
  • 上网日期:  2022-03-25
  • 刊出日期:  2022-03-20

/

返回文章
返回