搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti/TiO2包覆ZnO:Tb纳米纤维的光学性质

毛延哲 刘延霞 李健 李晖 潘孝军 谢二庆

引用本文:
Citation:

Ti/TiO2包覆ZnO:Tb纳米纤维的光学性质

毛延哲, 刘延霞, 李健, 李晖, 潘孝军, 谢二庆

Optical properties of Ti/TiO2 caped Tb3+-doped ZnO nanofibers

Mao Yan-Zhe, Liu Yan-Xia, Li Jian, Li Hui, Pan Xiao-Jun, Xie Er-Qing
PDF
导出引用
  • 用电纺丝方法制备了ZnO:Tb纳米纤维. 用X-射线衍射、Raman光谱对其形貌做了表征. 结果显示,ZnO:Tb纳米纤维为六方纤锌矿结构,Tb掺杂对ZnO的结晶性有影响. 利用表面等离激元,通过对纳米纤维表面包覆金属Ti和TiO2,比较了其光致发光谱,得到在325 nm激发下ZnO:Tb纳米纤维中稀土发光效率低的原因是ZnO和Tb之间不能进行有效的能量传递;包覆TiO2后能提高稀土发光效率.
    ZnO:Tb nanofibers are fabricated by electrospinning method. X-ray diffraction and Raman results show that the sample is of hexagonal phase. The positions of doped diffraction peaks shift toward the small angle and the shift does not change with Tb content. Photoluminescence (PL) spectra of Tb-doped ZnO nanofibers show a strong defect-related emission and indicate that the doping affects the crystallinity of ZnO. It is found that Ti-capped can enhance the ultraviolet emission of ZnO nanofiber, while the defect-related emission is depressed. The enhancement in ultraviolet emission is mostly attributed to the surface plasmon coupling effect at the interface. The PL results indicate that the ZnO is not a proper matrix for Tb3+ ion.
    • 基金项目: 中国博士后科学基金(批准号:2012M512046)资助的课题.
    • Funds: Project supported by the National Science Foundation for Post-Doctoral Scientists of China (Grant No. 2012M512046).
    [1]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [2]

    Djurisic A B, Leung Y H, Tam K H, Hsu Y F, Ding L, Ge W K, Zhong Y C, Wong K S, Chan W K, Tam H L, Cheah K W, Kwok W M, Phillips D L 2007 Nanotechnology 18 095702

    [3]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [4]

    Gao X Y, Chen C, Zhang S 2014 Chin. Phys. B 23 030701

    [5]

    Fernandez S, Naranjo F B 2010 Sol. Energy Mater. Sol. Cells 94 157

    [6]

    Lupan O, Shishiyanu S, Ursaki V, Khallaf H, Chow L, Shishiyanu T, Sontea V, Monaico E, Railean S 2009 Sol. Energy Mater. Sol. Cells 93 1417

    [7]

    Zamfirescu M, Kavokin A, Gil B, Malpuech G, Kaliteevski M 2002 Phys. Rev. B 65 161205

    [8]

    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [9]

    Xu X R, Su M Z 2004 Luminescence and Luminescent Materials (Beijing: Chemical Industry Press) (in Chinese)[徐叙瑢, 苏勉曾 2004 发光学与发光材料 (北京: 化学工业出版社)]

    [10]

    Zhang X T, Liu Y C, Ma J G, Lu Y M, Shen D Z, Xu W, Zhong G Z, Fan X W 2002 Thin Solid Films 413 257

    [11]

    Zeng X, Yuan J, Wang Z, Zhang L 2007 Adv. Mater. 19 4510

    [12]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786(in Chinese)[潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 物理学报 57 3786]

    [13]

    Peres M, Cruz A, Pereira S, Correia M R, Soares M J, Neves A, Carmo M C, Monteiro T, Pereira A S, Martins M A, Trindade T, Alves E, Nobre S S, Sá Ferreira R A 2007 Appl. Phys. A: Mater. Sci. Process. 88 129

    [14]

    Zhang Y Z, Liu Y P, Wu L H 2009 J. Phys. D: Appl. Phys. 42 085106

    [15]

    Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G 2006 Appl. Phys. Lett. 89 123

    [16]

    Zhang Z H, Guo H Q, Liu S M, Liu F Q, Wang Z G 2000 Acta Phys. Sin. 49 2307(in Chinese)[张志华, 郭海清, 刘舒曼, 刘峰奇, 王占国 2000 物理学报 49 2307]

    [17]

    Ni W H, An J, Lai C W, Ong H C, Xu J B 2006 J. Appl. Phys. 100 026103

    [18]

    Liu M, Qu S W, Yu W W, Bao S Y, Ma C Y, Zhang Q Y, He J, Jiang J C, Meletis E I, Chen C L 2010 Appl. Phys. Lett. 97 231906

    [19]

    Richters J P, Voss T, Kim D S, Scholz R, Zacharias M 2008 Nanotechnology 19 305202

    [20]

    Cheng C, Jiang Z J, Liu C Y 2008 J. Photochem. Photobiol. A: Chemistry 195 151

    [21]

    Ji T K, Wang W M, Long F, Fu Z Y, Wang H, Zhang Q J 2009 Mater. Sci. Engineer. B 162 179

    [22]

    Yang L, Tang Y H, Hua A P, Chen X H, Liang K, Zhang L D 2008 Physica B 403 2230

    [23]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [24]

    Pereira A S, Peres M, Soares M J, Alves E, Neves A, Monteiro T, Trindade T 2006 Nanotechnology 17 834

    [25]

    Cetin A, Kibar R, AyvacIklI M, Tuncer Y, Buchal C, Townsend P D, Karali T, Selvi S, Can N 2007 Surf. Coat. Technol. 201 8534

    [26]

    Shan F K, Liu G X, Lee W J, Shin B C 2007 J. Appl. Phys. 101 053106

    [27]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [28]

    Song J, An X Y, Zhou J Y, Liu Y X, Wang W, Li X D, Lan W, Xie E Q 2010 Appl. Phys. Lett. 97 122103

    [29]

    Liu M, Qu S W, Yu W W, Bao S Y, Ma C Y, Zhang Q Y, He J, Jiang J C, Meletis E I, Chen C L 2010 Appl. Phys. Lett. 97 231906

    [30]

    Ni W H, An J, Lai C W, Ong H C, Xu J B 2006 J. Appl. Phys. 100 026103

    [31]

    Kolaczkiewicz J, Bauer E 1986 Surf. Sci. 175 487

  • [1]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [2]

    Djurisic A B, Leung Y H, Tam K H, Hsu Y F, Ding L, Ge W K, Zhong Y C, Wong K S, Chan W K, Tam H L, Cheah K W, Kwok W M, Phillips D L 2007 Nanotechnology 18 095702

    [3]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [4]

    Gao X Y, Chen C, Zhang S 2014 Chin. Phys. B 23 030701

    [5]

    Fernandez S, Naranjo F B 2010 Sol. Energy Mater. Sol. Cells 94 157

    [6]

    Lupan O, Shishiyanu S, Ursaki V, Khallaf H, Chow L, Shishiyanu T, Sontea V, Monaico E, Railean S 2009 Sol. Energy Mater. Sol. Cells 93 1417

    [7]

    Zamfirescu M, Kavokin A, Gil B, Malpuech G, Kaliteevski M 2002 Phys. Rev. B 65 161205

    [8]

    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [9]

    Xu X R, Su M Z 2004 Luminescence and Luminescent Materials (Beijing: Chemical Industry Press) (in Chinese)[徐叙瑢, 苏勉曾 2004 发光学与发光材料 (北京: 化学工业出版社)]

    [10]

    Zhang X T, Liu Y C, Ma J G, Lu Y M, Shen D Z, Xu W, Zhong G Z, Fan X W 2002 Thin Solid Films 413 257

    [11]

    Zeng X, Yuan J, Wang Z, Zhang L 2007 Adv. Mater. 19 4510

    [12]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786(in Chinese)[潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 物理学报 57 3786]

    [13]

    Peres M, Cruz A, Pereira S, Correia M R, Soares M J, Neves A, Carmo M C, Monteiro T, Pereira A S, Martins M A, Trindade T, Alves E, Nobre S S, Sá Ferreira R A 2007 Appl. Phys. A: Mater. Sci. Process. 88 129

    [14]

    Zhang Y Z, Liu Y P, Wu L H 2009 J. Phys. D: Appl. Phys. 42 085106

    [15]

    Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G 2006 Appl. Phys. Lett. 89 123

    [16]

    Zhang Z H, Guo H Q, Liu S M, Liu F Q, Wang Z G 2000 Acta Phys. Sin. 49 2307(in Chinese)[张志华, 郭海清, 刘舒曼, 刘峰奇, 王占国 2000 物理学报 49 2307]

    [17]

    Ni W H, An J, Lai C W, Ong H C, Xu J B 2006 J. Appl. Phys. 100 026103

    [18]

    Liu M, Qu S W, Yu W W, Bao S Y, Ma C Y, Zhang Q Y, He J, Jiang J C, Meletis E I, Chen C L 2010 Appl. Phys. Lett. 97 231906

    [19]

    Richters J P, Voss T, Kim D S, Scholz R, Zacharias M 2008 Nanotechnology 19 305202

    [20]

    Cheng C, Jiang Z J, Liu C Y 2008 J. Photochem. Photobiol. A: Chemistry 195 151

    [21]

    Ji T K, Wang W M, Long F, Fu Z Y, Wang H, Zhang Q J 2009 Mater. Sci. Engineer. B 162 179

    [22]

    Yang L, Tang Y H, Hua A P, Chen X H, Liang K, Zhang L D 2008 Physica B 403 2230

    [23]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [24]

    Pereira A S, Peres M, Soares M J, Alves E, Neves A, Monteiro T, Trindade T 2006 Nanotechnology 17 834

    [25]

    Cetin A, Kibar R, AyvacIklI M, Tuncer Y, Buchal C, Townsend P D, Karali T, Selvi S, Can N 2007 Surf. Coat. Technol. 201 8534

    [26]

    Shan F K, Liu G X, Lee W J, Shin B C 2007 J. Appl. Phys. 101 053106

    [27]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [28]

    Song J, An X Y, Zhou J Y, Liu Y X, Wang W, Li X D, Lan W, Xie E Q 2010 Appl. Phys. Lett. 97 122103

    [29]

    Liu M, Qu S W, Yu W W, Bao S Y, Ma C Y, Zhang Q Y, He J, Jiang J C, Meletis E I, Chen C L 2010 Appl. Phys. Lett. 97 231906

    [30]

    Ni W H, An J, Lai C W, Ong H C, Xu J B 2006 J. Appl. Phys. 100 026103

    [31]

    Kolaczkiewicz J, Bauer E 1986 Surf. Sci. 175 487

  • [1] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [6] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [7] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [8] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [9] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [10] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [11] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [12] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究. 物理学报, 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [13] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [14] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [15] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [16] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [17] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [18] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [19] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [20] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
计量
  • 文章访问数:  5683
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-06
  • 修回日期:  2014-05-16
  • 刊出日期:  2014-09-05

/

返回文章
返回