搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体放电活化生理盐水杀菌应用研究

王学扬 齐志华 宋颖 刘东平

引用本文:
Citation:

等离子体放电活化生理盐水杀菌应用研究

王学扬, 齐志华, 宋颖, 刘东平

Bacteria sterilization application by using plasma activated physiological saline

Wang Xue-Yang, Qi Zhi-Hua, Song Ying, Liu Dong-Ping
PDF
导出引用
  • 等离子体中含有多种活性物种可实现高效安全杀菌, 活性物种与生物体相互作用多在水环境下进行. 因此等离子体与水的相互作用过程研究掀起了等离子体生物杀菌的新浪潮. 本文采用水中阵列放电产生等离子体活化生理盐水, 利用所产生的活化生理盐水对大肠杆菌开展了杀菌消毒研究, 当等离子体放电时间达到120 s时产生的活化生理盐水与大肠杆菌混合后可使大肠杆菌的存活效率降至0.001%. 通过紫外-可见吸收光谱测量及化学氧化还原沉降滴定表明放电电荷及激发态氧化性活性物种与水溶液相互作用, 转化为活化生理盐水中长寿命相对稳定存在的H2O2和O3等氧化性物种, 与大肠杆菌作用并主导主要杀菌效果.
    The plasma activated water has great application prospects in the fields of environmental protection, biomedicine, food safety, et al., due to its unique chemical activity. In this work, the plasma activated physiological saline is successfully generated by using hollow fiber-based cold microplasma jet array running in physiological saline solution. This design can lead to an obvious increase in the contact area between microplasmas and treated physiological saline solution, thus improving the chemical reaction efficiency of short-lived species. The influences of working gases such as He, N2, O2 and air on the sterilization efficiency of E. Coli by using this plasma activated physiological saline are investigated as a function of discharge time. As the discharge time increases from 10 to 180 s, the sterilization efficiency of the plasma activated physiological saline significantly increases. It is found that the bactericidal efficiency of the air discharge activated physiological saline is highest. For a discharge time of 120 s, the sterilization efficiency of E. Coli in this plasma activated physiological saline can reach as high as 99.999%. The pH value of this air discharge activated physiological saline is achieved by using acidity meter and as the discharge time increases from 10 to 60 s, the pH value decreases from 7.3 to 3.1 and the physiological solution becomes acidic. This may be due to the NOX produced in the plasma reacting with water and producing nitric and nitrate acids. The reactive oxygen species generated in the plasma activated physiological saline are supposed to be O3 and H2O2. The concentrations of O3 and H2O2 are identified by using UV-visible absorption spectra and chemical deposition methods. The strong absorption peak of O3 in UV-visible absorption spectrum is at a wavelength of 253.7 nm. The concentration of O3 is calculated by using Beer-Lambert Law. As the discharge time increases, the concentration of O3 in the plasma activated physiological saline obviously increases. For a discharge time of 60 s, the concentration of O3 is 43.1210-3 mol/L and nearly saturated. The concentration of H2O2 is obtained by the total amount of reactive oxygen species, which is calculated by using the chemical deposition method, deducting the O3 content. As the discharge time increases from 10 to 180 s, the concentration of H2O2 increases from 1.510-3 to 4.710-3 mol/L. The analyses of experimental data from various methods indicate that air discharge activated physiological saline containing a variety of long-lived reactive oxygen species, such as H2O2 and O3, is very effective in killing E. Coli cells in the acidic saline solution. The air discharge activated physiological saline can provide a means to store the advanced oxidation species induced by the discharge for sterilization applications.
      通信作者: 宋颖, songying@dlnu.edu.cn
      Corresponding author: Song Ying, songying@dlnu.edu.cn
    [1]

    Mason N J 2009 J. Phys. D: Appl. Phys. 42 194003

    [2]

    Yang D Z, Wang W C, Zhang S, Liu Z J, Jia L, Dai L Y 2013 EPL-Europhys. Lett. 102 65001

    [3]

    Lee M H, Park B J, Jin S H, Kim D, Han I, Kim J, Hyun S O, Chuang K H, Park J C 2009 New J. Phys. 11 115022

    [4]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Colins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001

    [5]

    Kudo K I, Ito H, Ihara S, Terato H 2015 J. Phys. D: Appl. Phys. 48 365401

    [6]

    Fumagalli F, Kylian O, Amato L, Hanus J, Rossi F 2102 J. Phys. D: Appl. Phys. 45 135203

    [7]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [8]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣, 彭磊, 孙悦, 陈维, 冯克成, 杨思泽 2009 物理学报 58 1595]

    [9]

    Yan X, Xiong Z L, Zou F, Zhao S S, Lu X P, Yang G X, He G Y, Ostrikov K 2012 Plasma Process. Polym. 9 59

    [10]

    Kong G Y, Liu D X 2104 Chinese Journal of High Pressure Physics 40 2956 (in Chinese) [孔刚玉, 刘定新 2104 高压物理学报 40 2956]

    [11]

    Tochikubo F, Uchida S, Watanabe T 2004 Jpn. J. Appl. Phys. 43 315

    [12]

    Bera R K, Hanrahan R J 1986 J. Appl. Phys. 60 2115

    [13]

    Falkenstein Z 1997 J. Appl. Phys. 81 7158

    [14]

    Eichwald O, Yousfi M, Hennad A, Benabdessadok M D 1997 J. Appl. Phys. 82 4781

    [15]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459

    [16]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207

    [17]

    Malik M A, Ghaffar A, Malik S A 2001 Plasma Sources Sci. Technol. 10 82

    [18]

    Lukes P, Dolezalova E, I Sisrova, Clupek M 2014 Plasma Sources Sci. Technol. 23 015019

  • [1]

    Mason N J 2009 J. Phys. D: Appl. Phys. 42 194003

    [2]

    Yang D Z, Wang W C, Zhang S, Liu Z J, Jia L, Dai L Y 2013 EPL-Europhys. Lett. 102 65001

    [3]

    Lee M H, Park B J, Jin S H, Kim D, Han I, Kim J, Hyun S O, Chuang K H, Park J C 2009 New J. Phys. 11 115022

    [4]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Colins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001

    [5]

    Kudo K I, Ito H, Ihara S, Terato H 2015 J. Phys. D: Appl. Phys. 48 365401

    [6]

    Fumagalli F, Kylian O, Amato L, Hanus J, Rossi F 2102 J. Phys. D: Appl. Phys. 45 135203

    [7]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [8]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣, 彭磊, 孙悦, 陈维, 冯克成, 杨思泽 2009 物理学报 58 1595]

    [9]

    Yan X, Xiong Z L, Zou F, Zhao S S, Lu X P, Yang G X, He G Y, Ostrikov K 2012 Plasma Process. Polym. 9 59

    [10]

    Kong G Y, Liu D X 2104 Chinese Journal of High Pressure Physics 40 2956 (in Chinese) [孔刚玉, 刘定新 2104 高压物理学报 40 2956]

    [11]

    Tochikubo F, Uchida S, Watanabe T 2004 Jpn. J. Appl. Phys. 43 315

    [12]

    Bera R K, Hanrahan R J 1986 J. Appl. Phys. 60 2115

    [13]

    Falkenstein Z 1997 J. Appl. Phys. 81 7158

    [14]

    Eichwald O, Yousfi M, Hennad A, Benabdessadok M D 1997 J. Appl. Phys. 82 4781

    [15]

    Herron J T, Green D S 2001 Plasma Chem. Plasma Process. 21 459

    [16]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207

    [17]

    Malik M A, Ghaffar A, Malik S A 2001 Plasma Sources Sci. Technol. 10 82

    [18]

    Lukes P, Dolezalova E, I Sisrova, Clupek M 2014 Plasma Sources Sci. Technol. 23 015019

  • [1] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231598
    [2] 穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华. 太赫兹技术在胶质瘤诊疗中的应用: 从组织分级到分子分型. 物理学报, 2022, 71(17): 178702. doi: 10.7498/aps.71.20212419
    [3] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术. 物理学报, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [4] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [5] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [6] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [7] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [8] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [9] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [10] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [11] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断. 物理学报, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [12] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [13] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [14] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [15] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [16] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度. 物理学报, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [17] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度. 物理学报, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [18] 张治国, 刘天伟, 徐 军, 邓新禄, 董 闯. MW-ECR PE-UMS等离子体特性及对Zr-N薄膜结构性能的影响. 物理学报, 2005, 54(7): 3257-3262. doi: 10.7498/aps.54.3257
    [19] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [20] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
计量
  • 文章访问数:  6179
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回