搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆架斜坡海域声场特性对常规波束形成阵增益的影响

谢磊 孙超 刘雄厚 蒋光禹

引用本文:
Citation:

陆架斜坡海域声场特性对常规波束形成阵增益的影响

谢磊, 孙超, 刘雄厚, 蒋光禹

Array gain of conventional beamformer affected by structure of acoustic field in continental slope area

Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu
PDF
导出引用
  • 常规波束形成是水下阵列信号处理中最基本的处理环节. 陆架斜坡海域特殊地形所带来的水下声场变化会影响阵增益. 以往的研究中, 只关注声场相关性对阵增益的影响. 本文基于水声信号传播理论, 研究常规波束形成阵增益与陆架斜坡海域水下声场之间的关系, 证明声场相关性和传播损失是影响阵增益的内在因素, 并推导了各向同性噪声场中常规波束形成阵增益与两者之间的关系式. 结果表明: 1) 常规波束形成阵增益由声场相关性和声传播损失共同决定, 其最大值不超过10lg M; 2) 当两个不同接收位置的传播损失相似时, 基阵各阵元间的声场相关性越高, 阵增益越大; 3) 当两个不同接收位置的传播损失相差较大时, 阵增益与声场相关性不再是正相关关系. 利用RAM 声场软件, 在陆架斜坡海域上坡波导环境中, 对水平阵常规波束形成阵增益与声场相关性和传播损失的关系进行仿真验证.
    Conventional beamforming (CBF) is an important processing step in underwater array signal processing. Previous researches have shown that the sound field structure as manifested by amplitude nonhomogeneity and wave-front corrugation can reduce the array gain of CBF. The acoustic environment of the continental shelf slope area is very complex. For an underwater acoustic array in this area, the amplitude and phase of the received signals will be distortional seriously. Recently, the acoustic field correlation has been the focus of research on the array gain relations with the underwater acoustic filed. However, the attenuation of acoustic field correlation is not the only factor that induces the array gain to decline, and the analyses of the array gain in the shallow water based on normal-mode model are not applicable to the continental slope area. In this paper, the array gain relations with the structure of acoustic field in continental slop area are investigated based on the theory of underwater acoustic signal propagation. The effects of acoustic field on the signal and noise gains are considered respectively. The analytic expressions of the array gain of CBF in an isotropic noise field are derived from the primal definition of array gain, which indicates that acoustic field correlation and transmission loss in continental slope are the intrinsic factors that affect the array gain of CBF. A horizontal uniform linear array (ULA) with a wide aperture receiving signals from a source in the deep water region is considered in the upslope propagation condition. The RAM program is utilized in the numerical simulations to generate the sound field of this specific environment with given parameters. The array gains, the ATLs and the horizontal longitudinal correlation coefficients of the acoustic field corresponding to three different locations are compared. Conclusions can be drawn as follows. 1) The array gain of CBF is determined by acoustic field correlation and the acoustic average transmission loss (ATL), and its maximum is less than 10lg M as the signal waveform distortion. 2) when the ATLs corresponding to hydrophones at two different receiving locations are similar, the correlation of acoustic filed is higher, and the array gain of CBF is larger. 3) When the ATLs corresponding to hydrophones at two different receiving locations are greatly different, the relation between the array gain of CBF and the acoustic filed correlation is no longer positive. The simulation results verify the array gain of CBF relations with the acoustic filed correlation and the transmission loss in the continental slope area.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11534009)资助的课题.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11534009).
    [1]

    Urick R J 1983 Principles of Underwater Sound (Westport: Peninsula Publishing) p33

    [2]

    van Trees H L 2002 Optimum Array Processing: Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons Inc) p63

    [3]

    Bourret R C 1961 J. Acoust. Soc. Am 33 1793

    [4]

    Berman H G, Berman A 1962 J. Acoust. Soc. Am 34 555

    [5]

    Brown J L 1962 J. Acoust. Soc. Am 34 1927

    [6]

    Kleinberg L I 1980 J. Acoust. Soc. Am. 67 572

    [7]

    Cox H 1973 J. Acoust. Soc. Am. 54 1743

    [8]

    Green M C 1976 J. Acoust. Soc. Am. 60 129

    [9]

    Buckingham M J 1979 J. Acoust. Soc. Am. 65 148

    [10]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: AIP Press/Springer) p258

    [11]

    Hamson R M 1980 J. Acoust. Soc. Am. 68 156

    [12]

    Neubert J A 1981 J. Acoust. Soc. Am. 70 1098

    [13]

    Liu Q Y, Song J Zhao C M 2010 Acoustics and Electronics 2 8 (in Chinese) [刘清宇, 宋俊, 赵春梅 2010 声学与电子工程 2 8]

    [14]

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [宋俊 2005 博士学位论文(长沙: 国防科技大学)]

    [15]

    Carey W M 1998 J. Acoust. Soc. Am. 104 831

    [16]

    Yu H 1991 Ship Science and Technology 6 1 (in Chinese) [于瀚 1991 舰船科学技术 6 1]

    [17]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 物理学报 61 064701]

    [19]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [20]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [21]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [22]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [23]

    Wang L J 2011 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王鲁军2011 博士学位论文(北京: 中国科学院大学)]

    [24]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [25]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [26]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 4 305 (in Chinese) [苏晓星, 张仁和, 李风华 2006 声学学报 4 305]

  • [1]

    Urick R J 1983 Principles of Underwater Sound (Westport: Peninsula Publishing) p33

    [2]

    van Trees H L 2002 Optimum Array Processing: Detection, Estimation, and Modulation Theory (New York: John Wiley and Sons Inc) p63

    [3]

    Bourret R C 1961 J. Acoust. Soc. Am 33 1793

    [4]

    Berman H G, Berman A 1962 J. Acoust. Soc. Am 34 555

    [5]

    Brown J L 1962 J. Acoust. Soc. Am 34 1927

    [6]

    Kleinberg L I 1980 J. Acoust. Soc. Am. 67 572

    [7]

    Cox H 1973 J. Acoust. Soc. Am. 54 1743

    [8]

    Green M C 1976 J. Acoust. Soc. Am. 60 129

    [9]

    Buckingham M J 1979 J. Acoust. Soc. Am. 65 148

    [10]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: AIP Press/Springer) p258

    [11]

    Hamson R M 1980 J. Acoust. Soc. Am. 68 156

    [12]

    Neubert J A 1981 J. Acoust. Soc. Am. 70 1098

    [13]

    Liu Q Y, Song J Zhao C M 2010 Acoustics and Electronics 2 8 (in Chinese) [刘清宇, 宋俊, 赵春梅 2010 声学与电子工程 2 8]

    [14]

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [宋俊 2005 博士学位论文(长沙: 国防科技大学)]

    [15]

    Carey W M 1998 J. Acoust. Soc. Am. 104 831

    [16]

    Yu H 1991 Ship Science and Technology 6 1 (in Chinese) [于瀚 1991 舰船科学技术 6 1]

    [17]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [18]

    Wang J, Ma R L, Wang L, Meng J M 2012 Acta Phys. Sin. 61 064701 (in Chinese) [王晶, 马瑞玲, 王龙, 孟俊敏 2012 物理学报 61 064701]

    [19]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [20]

    Jensen F B, Kuperman W A 1980 J. Acoust. Soc. Am. 67 1564

    [21]

    Pierce A D 1982 J. Acoust. Soc. Am. 72 523

    [22]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [23]

    Wang L J 2011 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王鲁军2011 博士学位论文(北京: 中国科学院大学)]

    [24]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [25]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [26]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 4 305 (in Chinese) [苏晓星, 张仁和, 李风华 2006 声学学报 4 305]

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [4] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [5] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [6] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [7] 徐明, 许传云, 曹克非. 度相关性对无向网络可控性的影响. 物理学报, 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [8] 谢磊, 孙超, 刘雄厚, 蒋光禹, 孔德智. 陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析. 物理学报, 2017, 66(19): 194301. doi: 10.7498/aps.66.194301
    [9] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [10] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [11] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [12] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [13] 周杰, 王亚林, 菊池久和. 多天线信道空间衰落相关性近似算法及其复杂性研究. 物理学报, 2014, 63(23): 230205. doi: 10.7498/aps.63.230205
    [14] 刘宗伟, 孙超, 杜金燕. 不确定海洋声场中的检测性能损失环境敏感度度量. 物理学报, 2013, 62(6): 064303. doi: 10.7498/aps.62.064303
    [15] 王启光, 侯威, 郑志海, 高荣. 东亚区域大气长程相关性. 物理学报, 2009, 58(9): 6640-6650. doi: 10.7498/aps.58.6640
    [16] 封国林, 龚志强, 侯威, 王启光, 支蓉. 气象领域极端事件的长程相关性. 物理学报, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [17] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [18] 王启光, 支 蓉, 张增平. Lorenz系统长程相关性研究. 物理学报, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [19] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [20] 黎永清, 王育竹. 利用光子相关性降低量子噪声. 物理学报, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
计量
  • 文章访问数:  5743
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 修回日期:  2016-05-04
  • 刊出日期:  2016-07-05

/

返回文章
返回