搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数

赵东亮 李璞 刘香莲 郭晓敏 郭龑强 张建国 王云才

引用本文:
Citation:

利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数

赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才

Online real-time 7 Gbit/s physical random number generation utilizing chaotic laser pulses

Zhao Dong-Liang, Li Pu, Liu Xiang-Lian, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Wang Yun-Cai
PDF
导出引用
  • 提出了一种基于混沌激光的在线实时产生高速物理随机数的方法,通过对连续的混沌激光进行光采样得到离散的混沌激光脉冲序列,利用差分比较器对混沌脉冲序列进行自延迟比较,在线实时输出高速物理随机数.并以光反馈半导体激光器这一典型混沌激光产生装置作为物理熵源,对所提方法进行了原理性实验论证,实现了实时速率为7 Gbit/s的物理随机数在线产生,可成功通过随机数行业测试标准(NIST SP 800-22).
    Random numbers are used to encrypt the information in the field of secure communications. According to one-time pad theory found by Shannon, the absolute security of the high-speed communication requires the ultrafast reliable random numbers to be generated in real-time. Using complex algorithms can generate pseudorandom numbers, but they can be predicted due to their periodicity. Random numbers based on physical stochastic phenomena (such as electronic noise, frequency jitter of oscillator) can provide reliable random numbers. However, their generation rates are at a level of Mbit/s typically, limited by the bandwidth of traditional physical sources. In recent years, high-speed physical random number generation based on chaotic laser has attracted much attention. Common methods of extracting random numbers are to sample and quantitate the chaotic signal in electronic domain with a 1-bit or multi-bit analog-to-digital converter (ADC) triggered by an RF clock and then post-process the original binary sequences into random numbers. However, the large jitter of the RF clock severely restricts the speed of ADC. Moreover, the existence of the subsequent post-processing process put a huge challenge to how the synchronization is kept among all the devices (e.g., XOR gates, memory buffers, parallel serial converters) by using an RF clock. Thus, to our knowledge, the fastest real-time speed of the reported physical random number generator is less than 5 Gbit/s. In this paper, we propose a novel method of generating the real-time physical random numbers by utilizing chaotic laser pulses. Through sampling the chaotic laser in all-optical domain by using a mode-locked pulsed laser, chaotic laser pulse sequences can be obtained. Then, real-time physical random numbers are obtained directly by self-delay comparing the chaotic pulse sequences with no need of RF clock nor any post-processing. Furthermore, a proof-of-principle experiment is carried out, in which an optical feedback chaotic semiconductor laser is employed as an entropy source. Experimental results show that the real-time random number sequences at rates of up to 7 Gbit/s can be achieved. The real-time speed is mainly limited by the bandwidth of the applied chaotic signal. If the chaotic laser with a higher bandwidth is adopted, the real-time generation rate can be further enhanced.
      通信作者: 李璞, lipu@tyut.edu.cn
    • 基金项目: 国家自然科学基金科学仪器基础研究专款项目(批准号:61227016)、国家自然科学基金(批准号:61505137,61405138,51404165)、国家国际科技合作专项(批准号:2014DFA50870)、山西省自然科学基金(批准号:2015021088)和山西省高等学校科技创新项目(批准号:2015122)资助的课题.
      Corresponding author: Li Pu, lipu@tyut.edu.cn
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the National Natural Science Foundation of China (Grant Nos. 61505137, 61405138, 51404165), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 2014DFA50870), the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021088), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2015122).
    [1]

    Shannon C E 1949Bell Syst.Tech.J. 28 656

    [2]

    Aaldert C 1991Am.J.Phys. 59 700

    [3]

    Xu P, Wong Y L, Horiuchi T K, Abshire P A 2006Electron.Lett. 42 1346

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003IEEE Trans.Comput. 52 403

    [5]

    Wang A B, Wang Y C, He H C 2008IEEE Photonics Technol.Lett. 20 1633

    [6]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003IEEE J.Quantum Electron. 39 1462

    [7]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011Opt.Lett. 36 1008

    [8]

    Zhao Q C, Yin H X 2013Laser Optoelectron.Prog. 50 23(in Chinese)[赵清春, 殷洪玺2013激光与光电子学进展50 23]

    [9]

    Soriano M C, Garcaojalvo J, Mirasso C R, Fischer I 2013Rev.Mod.Phys. 85 421

    [10]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008Nat.Photonics 2 728

    [11]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013Opt.Express 21 20452

    [12]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009Phys.Rev.Lett. 103 024102

    [13]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011Acta Phys.Sin. 60 110509(in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂2011物理学报60 110509]

    [14]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014Opt.Express 22 6634

    [15]

    Jiang L, Li P, Zhang J Z, Sun Y Y, Hu B, Wang Y C 2015Acta Phys.Sin. 64 154213(in Chinese)[江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才2015物理学报64 154213]

    [16]

    Li P, Jiang L, Zhang J G, Zhang J Z, Wang Y C 2015IEEE Photonics J. 7 7801108

    [17]

    Lin F Y, Liu J M 2003Opt.Commun. 221 173

    [18]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010Acta Phys.Sin. 59 7679(in Chinese)[张继兵, 张建忠, 杨毅彪, 梁君生, 王云才2010物理学报59 7679]

    [19]

    Li P, Sun Y Y, Liu X L, Yi X G, Zhang J G, Guo X M, Guo Y Q, Wang Y C 2016Opt.Lett. 41 3347

  • [1]

    Shannon C E 1949Bell Syst.Tech.J. 28 656

    [2]

    Aaldert C 1991Am.J.Phys. 59 700

    [3]

    Xu P, Wong Y L, Horiuchi T K, Abshire P A 2006Electron.Lett. 42 1346

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003IEEE Trans.Comput. 52 403

    [5]

    Wang A B, Wang Y C, He H C 2008IEEE Photonics Technol.Lett. 20 1633

    [6]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003IEEE J.Quantum Electron. 39 1462

    [7]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011Opt.Lett. 36 1008

    [8]

    Zhao Q C, Yin H X 2013Laser Optoelectron.Prog. 50 23(in Chinese)[赵清春, 殷洪玺2013激光与光电子学进展50 23]

    [9]

    Soriano M C, Garcaojalvo J, Mirasso C R, Fischer I 2013Rev.Mod.Phys. 85 421

    [10]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008Nat.Photonics 2 728

    [11]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013Opt.Express 21 20452

    [12]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009Phys.Rev.Lett. 103 024102

    [13]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011Acta Phys.Sin. 60 110509(in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂2011物理学报60 110509]

    [14]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014Opt.Express 22 6634

    [15]

    Jiang L, Li P, Zhang J Z, Sun Y Y, Hu B, Wang Y C 2015Acta Phys.Sin. 64 154213(in Chinese)[江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才2015物理学报64 154213]

    [16]

    Li P, Jiang L, Zhang J G, Zhang J Z, Wang Y C 2015IEEE Photonics J. 7 7801108

    [17]

    Lin F Y, Liu J M 2003Opt.Commun. 221 173

    [18]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010Acta Phys.Sin. 59 7679(in Chinese)[张继兵, 张建忠, 杨毅彪, 梁君生, 王云才2010物理学报59 7679]

    [19]

    Li P, Sun Y Y, Liu X L, Yi X G, Zhang J G, Guo X M, Guo Y Q, Wang Y C 2016Opt.Lett. 41 3347

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感. 物理学报, 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [3] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [4] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [5] 刘延飞, 陈诚, 杨东东, 李修建. 基于GaAs/Al0.45Ga0.55As超晶格芯片自发混沌振荡的8 Gb/s物理真随机数实现. 物理学报, 2020, 69(10): 100504. doi: 10.7498/aps.69.20200136
    [6] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌. 物理学报, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [7] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [8] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [9] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [10] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数. 物理学报, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [11] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [12] 江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才. 基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究. 物理学报, 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [13] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [14] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [15] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [16] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [17] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [18] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [19] 唐曦, 吴加贵, 夏光琼, 吴正茂. 基于互注入半导体激光器的混沌输出产生17.5 Gbit/s随机码. 物理学报, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [20] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
计量
  • 文章访问数:  5807
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-12-02
  • 刊出日期:  2017-03-05

/

返回文章
返回