搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管

张力 林志宇 罗俊 王树龙 张进成 郝跃 戴扬 陈大正 郭立新

引用本文:
Citation:

具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管

张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新

High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications

Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin
PDF
导出引用
  • GaN基高电子迁移率晶体管(HEMT)相对较低的击穿电压严重限制了其大功率应用.为了进一步改善器件的击穿特性,通过在n-GaN外延缓冲层中引入六个等间距p-GaN岛掩埋缓冲层(PIBL)构成p-n结,提出一种基于p-GaN埋层结构的新型高耐压AlGaN/GaN HEMT器件结构.Sentaurus TCAD仿真结果表明,在关态高漏极电压状态下,p-GaN埋层引入的多个反向p-n结不仅能够有效调制PIBL AlGaN/GaN HEMT的表面电场和体电场分布,而且对于缓冲层泄漏电流有一定的抑制作用,这保证了栅漏间距为10 μm的PIBL HEMT能够达到超过1700 V的高击穿电压(BV),是常规结构AlGaN/GaN HEMT击穿电压(580 V)的3倍.同时,PIBL结构AlGaN/GaN HEMT的特征导通电阻仅为1.47 mΩ ·cm2,因此获得了高达1966 MW·cm-2的品质因数(FOM=BV2/Ron,sp).相比于常规的AlGaN/GaN HEMT,基于新型p-GaN埋岛结构的HEMT器件在保持较低特征导通电阻的同时具有更高的击穿电压,这使得该结构在高功率电力电子器件领域具有很好的应用前景.
    The relatively low breakdown voltage (BV) seriously restricts the high power application of GaN based high electron mobility transistors (HEMTs). In this work, a novel AlGaN/GaN HEMT with buried p-n junctions is investigated to improve the breakdown characteristics by introducing six equidistant p-GaN islands buried buffer layer (PIBL) into the n-GaN epitaxial layer. The p-GaN islands act as reversed p-n junctions, which produces new electric field peaks at the edges of p-GaN islands, then realizing a much high breakdown voltage, and the reversed p-n junctions can help to suppress punch-through effect in buffer layer. Furthermore, the characteristics of proposed device are analyzed in detail from the aspects of off-state I-V characteristics, equipotential contour distribution, off-state electric field distribution, offstate carrier distribution and output characteristics. Simulated equipotential contour distribution shows that under the condition of high-voltage blocking state, multiple reverse p-n junctions introduced by the buried p-GaN islands produce five new electric field peaks, realizing a more uniform equipotential contour distribution especially at the edges of the buried p-islands. Then off-state electric field distribution demonstrates that p-GaN islands modulate the surface and bulk electric fields, which makes the voltage distributed in a larger area, therefore presenting a much higher breakdown voltage. It can be seen from off-state carrier distribution that the electrons in the buffer layer fully depleted in PIBL HEMT effectively suppress the buffer leakage current, thus alleviating the buffer-leakage-induced impact ionization leading to a high breakdown BV of over 1700 V with gate-to-drain length of 10μm, which is nearly 3 times larger than BV of 580 V in conventional AlGaN/GaN HEMT. Although, the introduction of p-type buried layer narrows the current path and causes an improved on-resistance, simulation shows that the specific on-resistance (Ron,sp) of PIBL HEMT is only about 1.47 mΩ·cm2, while the BV of the PIBL device is over 1700 V, and the obtained figure of merit (FOM=BV2/Ron,sp) reaches as high as 1966 MW·cm-2. The optimization of device structure reveals that when the distance between p-GaN layer and AlGaN layer (t) is 0.2μm, a thinner buried p-GaN island (tp) should help to realize a more significant electric field modulation, and PIBL HEMT can achieve a maximum BV of 1789 V with a tp=0.1μm. Compared with the traditional AlGaN/GaN HEMT, the PIBL HEMT reveals a higher breakdown voltage, meanwhile ensuring low Ron,sp, which makes this structure a promising candidate in the applications of high power electronic devices.
      通信作者: 林志宇, zylin@xidian.edu.cn
    • 基金项目: 中国博士后科学基金(批准号:2015M582610)和国家自然科学基金(批准号:61404014,61574023)资助的课题.
      Corresponding author: Lin Zhi-Yu, zylin@xidian.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2015M582610) and the National Natural Science Foundation of China (Grant Nos. 61404014, 61574023).
    [1]

    Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203

    [2]

    Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201

    [3]

    Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [4]

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203

    [5]

    Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303

    [6]

    Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99

    [7]

    Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304

    [8]

    Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670

    [9]

    Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421

    [10]

    Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453

    [11]

    Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109

    [12]

    Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577

    [13]

    Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492

    [14]

    Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844

    [15]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [16]

    Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288

    [17]

    Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933

    [18]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117

    [19]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289

    [20]

    Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305

    [21]

    Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273

    [22]

    Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529

    [23]

    Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443

  • [1]

    Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203

    [2]

    Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201

    [3]

    Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [4]

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203

    [5]

    Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303

    [6]

    Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99

    [7]

    Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304

    [8]

    Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670

    [9]

    Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421

    [10]

    Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453

    [11]

    Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109

    [12]

    Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577

    [13]

    Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492

    [14]

    Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844

    [15]

    Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104

    [16]

    Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288

    [17]

    Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933

    [18]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117

    [19]

    Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289

    [20]

    Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305

    [21]

    Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273

    [22]

    Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529

    [23]

    Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443

  • [1] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [3] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [4] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [5] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [6] 刘艺, 杨佳, 李兴, 谷伟, 高志鹏. 微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律. 物理学报, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [7] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [8] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [9] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [10] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [12] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析. 物理学报, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [18] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
计量
  • 文章访问数:  5850
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-08-16
  • 刊出日期:  2017-12-05

/

返回文章
返回