搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

漫反射立方腔单次反射平均光程的理论和实验研究

张云刚 刘如慧 汪梅婷 王允轩 李占勋 童凯

引用本文:
Citation:

漫反射立方腔单次反射平均光程的理论和实验研究

张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯

Theoretical and experimental study of average reflection optical path length of diffuse cubic cavity

Zhang Yun-Gang, Liu Ru-Hui, Wang Mei-Ting, Wang Yun-Xuan, Li Zhan-Xun, Tong Kai
PDF
导出引用
  • 根据Beer-Lambert定律可知,增加气体池的有效光程是提高气体监测灵敏度最直接而有效的途径.通过实验研究和分析,漫反射立方腔作为气体池能显著地增加有效光程,因此研究其内部的光线传播规律具有重要意义.基于对漫反射立方腔内光线传播规律的理论分析,得到了单次反射平均光程的理论值,建立了漫反射立方腔内光线传播的理论近似模型,并通过有限元法仿真获得了单次反射平均光程的模拟值.利用可调谐二极管激光吸收光谱技术得到了立方腔的有效光程,间接求得了单次反射平均光程的实验值.对理论值、模拟值和实验值进行比较分析,验证了理论近似模型和有限元法仿真的准确性和稳定性.
    The most direct and efficient method to improve the sensitivity of gas sensor is to increase the effective optical path length (Leff) of gas cell according to the Beer-Lambert law. Moreover through experimental research and analysis, the diffuse cubic cavity, as a kind of gas cell, can effectively increase the value of Leff, which is crucial to the study of the reflection law of light in the diffuse cubic cavity. Based on the analysis of the reflection law of light in the diffuse cubic cavity, the theoretical value of the single reflection average optical path length (Lave) is obtained, the theoretical approximation model of the light reflection in the diffuse cubic cavity is established, and the simulation values are obtained by the finite element method. The tunable diode laser absorption spectroscopy (TDLAS) is a perferred gas dection technique with high selectivity, fast response and non-contact measuring. We develop diffuse cubic cavities of different sizes and study the reflection law and characteristics of the light in the cavities. We obtain the Leff values of the cubic cavities using TDLAS, with that and the theoretical formula between Leff and Lave, which in relation to the side length a, the diffuse reflectivity of coating and port fraction f, the experimental values of the Lave are obtained. The accuracies and stabilities of the theoretical approximation model and the simulation results by the finite element method are verified. According to the relationship between the Lave and the number of reflections established by the finite element method, the relative errors between the simulation values and the theoretical values of Lave are less than 3.6%, when each inner surface of the diffuse cubic cavity is divided into 10001000 or more small patches. It shows that the finite element method has a satisfactory effect on the cubic cavities with different sizes, and the error range is less than 0.1%. The TDLAS is used to measure the Leff values of three different cubic cavities with side lengths of 5 cm, 8 cm, and 12 cm, and the corresponding experimental values of the Lave are calculated indirectly. A comparison among the theoretical values, simulation values and experimentical values of the Lave, shows that these three values are well consistent with each other, which indicates that the simulation of the reflection law of light in the diffuse reflection cubic cavity has a significant reference value for the experimental study. Also, the present study of the diffuse cubic cavity will provide a technical support for studying the diffuse cavity of arbitrary shape in the future.
      通信作者: 刘如慧, liuruhuizjk@126.com
    • 基金项目: 国家自然科学基金(批准号:61308065)和河北省自然科学基金(批准号:E2015203014)资助的课题.
      Corresponding author: Liu Ru-Hui, liuruhuizjk@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61308065) and the Natural Science Foundation of Hebei Province, China (Grant No. E2015203014).
    [1]

    Tang G H, Xu C L, Shao L T, Wang S M 2008 Chin. J. Sci. Instru. 29 244(in Chinese) [汤光华, 许传龙, 邵礼堂, 王式民 2008 仪器仪表学报 29 244]

    [2]

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H W, Wei F 2015 Chin. J. Laser 42 351(in Chinese) [郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351]

    [3]

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Chin. Opt. Lett. 35 337(in Chinese) [刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 光学学报 35 337]

    [4]

    Liang H Z, Zhang X, Rao J, Chen H W 2008 Chin. J. Biotechnol. 28 124(in Chinese) [梁华正, 张燮, 饶军, 陈焕文 2008 中国生物工程杂志 28 124]

    [5]

    D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Natale C D 2010 Lung Cancer 68 170

    [6]

    Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z W 2010 Int. J. Cancer 126 1920

    [7]

    Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 5154(in Chinese) [杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 物理学报 59 5154]

    [8]

    Hu R Z, Wang D, Xie P H, Ling L Y, Qin M, Li C X, Liu J G 2014 Acta Phys. Sin. 63 110707(in Chinese) [胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国 2014 物理学报 63 110707]

    [9]

    Sjoholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S 2011 Opt. Lett. 26 16

    [10]

    Tranchart S, Bachir I H, Destombes J L 1996 Appl. Opt. 35 7070

    [11]

    Lucke R L 2007 Appl. Opt. 46 6966

    [12]

    Hwang J, Shin D J, Jeong K R 2016 Metrologia 53 1231

    [13]

    Fukutomi D, Ishii K, Awazu K 2015 Lasers Med. Sci. 30 1335

    [14]

    Lackner M 2007 Rev. Chem. Eng. 23 65

    [15]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 45301

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Chin. Opt. Lett. 36 275(in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 275]

    [17]

    Zhou X, Yu J, Wang L, Gao Q, Zhang Z G 2017 Sens. Actuators B: Chem. 241 1076

    [18]

    Gao G Z, Cai T D, Hu B, Jia T J 2015 Spectrosc. Spect. Anal. 35 34(in Chinese) [高光珍, 蔡廷栋, 胡波, 贾天俊 2015 光谱学与光谱分析 35 34]

    [19]

    Yu J, Zheng F, Gao Q, Li Y J, Zhang Y G, Zhang Z G, Wu S H 2014 Appl. Phys.. 116 135

    [20]

    Fry E S, Musser J, Kattawar G W, Zhai P W 2006 Appl. Opt. 45 9053

    [21]

    Manojlovic L M, Marincic A S 2011 Meas. Sci. Technol. 22 075303

    [22]

    Yu J 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [虞佳 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [23]

    Yu J, Zhang Y G, Gao Q, Hu G, Zhang Z G, Wu S H 2014 Opt. Lett. 39 1941

    [24]

    Yu J, Gao Q, Zhang Y G, Zhang Z G, Wu S H 2014 J. Opt. 16 125708

  • [1]

    Tang G H, Xu C L, Shao L T, Wang S M 2008 Chin. J. Sci. Instru. 29 244(in Chinese) [汤光华, 许传龙, 邵礼堂, 王式民 2008 仪器仪表学报 29 244]

    [2]

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H W, Wei F 2015 Chin. J. Laser 42 351(in Chinese) [郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351]

    [3]

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Chin. Opt. Lett. 35 337(in Chinese) [刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 光学学报 35 337]

    [4]

    Liang H Z, Zhang X, Rao J, Chen H W 2008 Chin. J. Biotechnol. 28 124(in Chinese) [梁华正, 张燮, 饶军, 陈焕文 2008 中国生物工程杂志 28 124]

    [5]

    D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Natale C D 2010 Lung Cancer 68 170

    [6]

    Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z W 2010 Int. J. Cancer 126 1920

    [7]

    Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 5154(in Chinese) [杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 物理学报 59 5154]

    [8]

    Hu R Z, Wang D, Xie P H, Ling L Y, Qin M, Li C X, Liu J G 2014 Acta Phys. Sin. 63 110707(in Chinese) [胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国 2014 物理学报 63 110707]

    [9]

    Sjoholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S 2011 Opt. Lett. 26 16

    [10]

    Tranchart S, Bachir I H, Destombes J L 1996 Appl. Opt. 35 7070

    [11]

    Lucke R L 2007 Appl. Opt. 46 6966

    [12]

    Hwang J, Shin D J, Jeong K R 2016 Metrologia 53 1231

    [13]

    Fukutomi D, Ishii K, Awazu K 2015 Lasers Med. Sci. 30 1335

    [14]

    Lackner M 2007 Rev. Chem. Eng. 23 65

    [15]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 45301

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Chin. Opt. Lett. 36 275(in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 275]

    [17]

    Zhou X, Yu J, Wang L, Gao Q, Zhang Z G 2017 Sens. Actuators B: Chem. 241 1076

    [18]

    Gao G Z, Cai T D, Hu B, Jia T J 2015 Spectrosc. Spect. Anal. 35 34(in Chinese) [高光珍, 蔡廷栋, 胡波, 贾天俊 2015 光谱学与光谱分析 35 34]

    [19]

    Yu J, Zheng F, Gao Q, Li Y J, Zhang Y G, Zhang Z G, Wu S H 2014 Appl. Phys.. 116 135

    [20]

    Fry E S, Musser J, Kattawar G W, Zhai P W 2006 Appl. Opt. 45 9053

    [21]

    Manojlovic L M, Marincic A S 2011 Meas. Sci. Technol. 22 075303

    [22]

    Yu J 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [虞佳 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [23]

    Yu J, Zhang Y G, Gao Q, Hu G, Zhang Z G, Wu S H 2014 Opt. Lett. 39 1941

    [24]

    Yu J, Gao Q, Zhang Y G, Zhang Z G, Wu S H 2014 J. Opt. 16 125708

  • [1] 赵淑钰, 徐滨滨, 赵振宇, 吕雪芹. 顶部反射镜对GaN基共振腔发光二极管性能的影响研究. 物理学报, 2022, 71(4): 047801. doi: 10.7498/aps.71.20211720
    [2] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] 赵淑钰, 徐滨滨, 赵振宇, 吕雪芹. 顶部反射镜对GaN基共振腔发光二极管性能的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211720
    [5] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [6] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [7] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [8] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] 毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅. 激光二极管双端直接抽运混合腔板条激光器. 物理学报, 2015, 64(1): 014203. doi: 10.7498/aps.64.014203
    [10] 王敏锐, 蔡廷栋. 1.5μm处CO2与CO高温线强的实验分析与理论计算. 物理学报, 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [11] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [12] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [13] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [14] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究. 物理学报, 2013, 62(24): 249301. doi: 10.7498/aps.62.249301
    [15] 王锐, 王玉山. Delta-P1近似漫反射光学模型的二阶参量灵敏度. 物理学报, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [16] 宋俊玲, 洪延姬, 王广宇, 潘虎. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究. 物理学报, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [17] 汤益丹, 沈光地, 郭霞, 关宝璐, 蒋文静, 韩金茹. 带介质分布式Bragg反射镜结构高性能共振腔发光二极管的研究. 物理学报, 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [18] 董雅娟, 张俊兵, 陈海涛, 曾祥华. 大功率全方位反射镜发光二极管性能研究. 物理学报, 2011, 60(7): 077803. doi: 10.7498/aps.60.077803
    [19] 张剑铭, 邹德恕, 刘思南, 徐 晨, 沈光地. 新型全方位反射铝镓铟磷薄膜发光二极管. 物理学报, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  6033
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-01-05

/

返回文章
返回