搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi在固液混合相区的冲击参数测量及声速软化特性

李雪梅 俞宇颖 谭叶 胡昌明 张祖根 蓝强 傅秋卫 景海华

引用本文:
Citation:

Bi在固液混合相区的冲击参数测量及声速软化特性

李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华

Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone

Li Xue-Mei, Yu Yu-Ying, Tan Ye, Hu Chang-Ming, Zhang Zu-Gen, Lan Qiang, Fu Qiu-Wei, Jing Hai-Hua
PDF
导出引用
  • 冲击相变与熔化作为材料特性的一项重要研究内容,对于多相物态方程构建具有重要意义.本文利用追赶稀疏原理和阻滞法,基于火炮加载技术获得了17.328.3 GPa范围内纯铋(Bi)的高精度声速数据和Hugoniot参数,分析了声速软化规律,得到固-液混合相区Bi材料声速随压力的近似线性递减关系C=3.682-0.015 p,并进一步确定Bi的冲击熔化压力区间为1827.4 GPa.同时,Bi/LiF界面速度剖面的预期平台段在固液混合相区表现出渐进爬升的异常特征,分析认为,该现象与Bi材料的非均匀熔化动力学行为及冲击熔化完成时间尺度较长有关.
    Polymorphic phase transformation and melting under shock wave loading are important for studying the material dynamic mechanical behavior and equation of state in condensed matter physics. In this paper, the accurate Hugoniot parameter and sound velocity of shocked pure bismuth (Bi) in a pressure range of 17.3-28.3 GPa are obtained by using flyer impact method and rarefaction overtaking technique, respectively, and the sound velocity softening trend in shock-induced melting zone and the melting kinetics of Bi are then analyzed. In each experiment, six Bi samples with different thickness values are affected by oxygen-free-high-conducticity copper flyer fired through power gun. Shock wave velocity and particle velocity in Bi are experimentally determined through measuring the impact velocity and shock wave time in the thickest sample by photon Doppler velocimetry (PDV) technique. The velocity profiles on each interface between Bi and lithium fluoride (LiF) window are measured by displacement interferometer system of any reflector (DISAR), and then the sound velocity of shocked Bi is determined using the rarefaction overtaking method. The analyses of our results show that the softening of sound velocity of Bi approximatively satisfies the linear relation of Cs=3.682-0.015 p in the solid-liquid coexistence zone, and the pressure zone of the solid-liquid coexistence phase is further affirmed to be in a range of 18-27.4 GPa. Additionally, the obtained Hugoniot data for Bi in this paper supply a gap in the pressure zone of solid-liquid mixing phase. The quadratic equation with the expression of Ds=0.401+ 3.879 up-0.876 up2 can better demonstrate the relation between shock wave velocity and particle velocity than a linear one when the particle velocity lies in a range of 0.5-1.0 km/s, and this non-linear property maybe has a relationship with the shock-induced melting of Bi. Finally, our wave profile measurement of the Bi/LiF interface shows peculiar ramp characteristics in the expected velocity plateau zone in the pressure zone of solid-liquid coexistence phase, which may be associated with both the nonhomogeneous melting kinetics and the long time scale of melting for bismuth.
      通信作者: 李雪梅, lixuem@caep.cn
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2015B0101006)资助的课题.
      Corresponding author: Li Xue-Mei, lixuem@caep.cn
    • Funds: Project supported by the Foundation of China Academy of Engineering Physics (Grant No. 2015B010106).
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Larson D B 1967 J. Appl. Phys. 38 1541

    [3]

    Romain J P 1974 J. Appl. Phys. 45 135

    [4]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [5]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701

    [6]

    Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906

    [7]

    Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [8]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [9]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910

    [10]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [11]

    Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101

    [12]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 物理学报 60 106401]

    [13]

    Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509

    [14]

    Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301

    [15]

    Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]

    [16]

    Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523

    [17]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

    [18]

    Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23

    [19]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [20]

    Hayes D B 1975 J. Appl. Phys. 46 3438

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Larson D B 1967 J. Appl. Phys. 38 1541

    [3]

    Romain J P 1974 J. Appl. Phys. 45 135

    [4]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [5]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701

    [6]

    Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906

    [7]

    Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [8]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [9]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910

    [10]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [11]

    Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101

    [12]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 物理学报 60 106401]

    [13]

    Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509

    [14]

    Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301

    [15]

    Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]

    [16]

    Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523

    [17]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

    [18]

    Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23

    [19]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [20]

    Hayes D B 1975 J. Appl. Phys. 46 3438

  • [1] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响. 物理学报, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [2] 屈科, 朴胜春, 朱凤芹. 一种基于内潮动力特征的浅海声速剖面构建新方法. 物理学报, 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [3] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [4] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [7] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [8] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [9] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [10] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [11] 谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华. 金属Bi的卸载熔化实验研究. 物理学报, 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [12] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [13] 李佳, 杨坤德, 雷波, 何正耀. 印度洋中北部声速剖面结构的时空变化及其物理机理研究. 物理学报, 2012, 61(8): 084301. doi: 10.7498/aps.61.084301
    [14] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质. 物理学报, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [15] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [16] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [17] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [18] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [19] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
计量
  • 文章访问数:  6152
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-02
  • 修回日期:  2017-12-09
  • 刊出日期:  2019-02-20

/

返回文章
返回