搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理

杨剑群 董磊 刘超铭 李兴冀 徐鹏飞

引用本文:
Citation:

Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理

杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞

Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors

Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei
PDF
导出引用
  • 航天器中电子器件在轨服役期间,会遭受到空间带电粒子及各种射线的辐射环境的显著影响,易于造成电离辐射损伤.本文采用60Co γ射线辐照源,针对有/无Si3N4钝化层结构的横向PNP型(LPNP)双极晶体管,开展了电离辐射损伤效应及机理研究.利用KEITHLEY 4200-SCS半导体参数测试仪测试了LPNP晶体管电性能参数(包括Gummel特性曲线和电流增益等).采用深能级瞬态谱分析仪(DLTS),对辐照前后有/无Si3N4钝化层结构的LPNP晶体管的电离缺陷进行测试.研究结果表明,在相同吸收剂量条件下,与无Si3N4钝化层的晶体管相比,具有Si3N4钝化层的LPNP晶体管基极电流退化程度大,并且随吸收剂量的增加,电流增益退化更为显著.通过DLTS分析表明,与无Si3N4钝化层的晶体管相比,有Si3N4钝化层的晶体管辐射诱导的界面态能级位置更接近于禁带中心.这是由于制备Si3N4钝化层时引入了大量的氢所导致,而氢的存在会促使辐射诱导的界面态能级位置更接近于禁带中心,复合率增大,从而加剧了晶体管性能的退化.
    Bipolar junction transistors (BJTs) are generally employed in spacecraft, due to their current drive capability, linearity and excellent matching characteristics. High-energy particles and cosmic rays in space environment remarkably affect electronic devices, especially in BJTs producing total ionizing dose, displacement damage or single event effect. Among them, ionizing irradiation effects on BJTs dominates. For BJTs, ionization damage can induce the oxide trapped charges in SiO2 layer and interface traps in Si/SiO2, resulting in more recombination base current and the degradation of current gain. Consequently, the accumulation of both oxide charges and interface traps causes an increase in the base current.#br#Passivation layer is also an important factor of the irradiation effects of BJTs. Previous works only studied the degradation of electrical properties of the devices with/without passivation layer induced by irradiation, and did not give an influence mechanisms of passivation layer on the irradiation respond of devices. Therefore, the irradiation damage mechanisms of the BJTs with or without nitride passivation layer are not clear so far.#br#In this paper, the impact of Si3N4 passivation layer on ionizing irradiation damage on lateral PNP bipolar transistors (LPNP) was studied by using 60Co gamma irradiation source. The KEITHLEY 4200-SCS semiconductor parameter analyzer was used to measure the relationship between the electrical properties of LPNP transistors and ionization dose, including the Gummel characteristics, the degradation of current gain, etc. The irradiation defects of the LPNP transistors with/without passivation layer structure were analyzed by the deep level transient spectroscopy (DLTS). The experimental results show that the electrical properties of the LPNP transistors with and without passivation layer exhibit similar characteristics. For all samples, the base current increases with increasing the total dose, while the collector current does not almost change. Compared with the LPNP transistors without Si3N4 passivation layer, the degradation of LPNP transistor with Si3N4 passivation layer is severe.#br#Based on the excess base current as a function of base-emitter voltage for the LPNP transistors with/without nitride passivation layer, the degradation of bipolar transistors with nitride passivation layer is severe under the same irradiation conditions. The DLTS analyses show that compared with the bipolar transistors without nitride passivation layer, the signal peak located at about 300 K is shifted to low temperature for the bipolar transistors with nitride passivation layer. The above results show that the LPNP transistors with nitride passivation could produce a large number of interface states with the energy level is closer to the middle of the forbidden band during the irradiation, which is attributed to a large number of hydrogen presence during the processing of fabricated passivation layer.
      通信作者: 李兴冀, lxj0218@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11575049)资助的课题.
      Corresponding author: Li Xing-Ji, lxj0218@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575049).
    [1]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103

    [2]

    Pien C F, Amir H F A, Salleh S, Muhammad A 2010 Am. J. Appl. Sci 7 807

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin 60 088501 (in Chinese) [翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    Chen W 2017 Chin. Sci. Bull 62 967 (in Chinese) [陈伟 2017 科学通报 62 967]

    [5]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [6]

    Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. Nucl. Sci 54 1049

    [7]

    Pease R L 2003 IEEE Trans. Nucl. Sci 50 539

    [8]

    Madhu K V, Kumar R, Ravindra M, Damle R 2008 Solid-State Electron 52 1237

    [9]

    Kulkarni S R, Ravindra M, Joshi G R, Damle R 2006 Nucl. Instr. Meth. Phys. Res. B 251 157

    [10]

    Kambour K E, Kouhestani C, Nguyen D D, Devine R A B 2016 J. Vac. Sci. Technol. B 34 1071

    [11]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Law M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci 59 3087

    [12]

    Liu C M, Li X J, Geng H B, Yang D Z, He S Y 2012 Nucl. Instr. Meth. Phys. Res. A 670 6

    [13]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin 58 5560 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560]

    [14]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [15]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G H, Fleetwood D M, Dodd P E, Reber C A, Witczak S C, Riewe L C, Hjalmarson H P, Banks J C, Doyle B L, Knapp J A 2002 IEEE Trans. Nucl. Sci 49 3171

    [16]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A, Chai F 1993 IEEE Trans. Nucl. Sci 40 1276

    [17]

    Koiser S L, Schrimpf R D, Wei A, Delaus M 1993 Bipolarbicoms Circuits & Technology Meeting 94 211

    [18]

    Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. Nucl. Sci 60 3924

    [19]

    Li X J, Liu C M, Yang J Q 2015 IEEE Trans. Device Mater. Rel 15 258

    [20]

    Li X J, Yang J Q, Liu C M 2017 IEEE Trans. Nucl. Sci 64 1905

    [21]

    Shockley W, Read W T 1952 Phys Rev 87 835

    [22]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci 55 3169

    [23]

    Galloway K F, Pease R L, Schrimpf R D, Emily D W 2013 IEEE Trans. Nucl. Sci 60 1731

    [24]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci 51 3158

    [25]

    Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M, Pantelides S T 2010 IEEE Trans. Nucl. Sci 57 3046

  • [1]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103

    [2]

    Pien C F, Amir H F A, Salleh S, Muhammad A 2010 Am. J. Appl. Sci 7 807

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin 60 088501 (in Chinese) [翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    Chen W 2017 Chin. Sci. Bull 62 967 (in Chinese) [陈伟 2017 科学通报 62 967]

    [5]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [6]

    Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. Nucl. Sci 54 1049

    [7]

    Pease R L 2003 IEEE Trans. Nucl. Sci 50 539

    [8]

    Madhu K V, Kumar R, Ravindra M, Damle R 2008 Solid-State Electron 52 1237

    [9]

    Kulkarni S R, Ravindra M, Joshi G R, Damle R 2006 Nucl. Instr. Meth. Phys. Res. B 251 157

    [10]

    Kambour K E, Kouhestani C, Nguyen D D, Devine R A B 2016 J. Vac. Sci. Technol. B 34 1071

    [11]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Law M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci 59 3087

    [12]

    Liu C M, Li X J, Geng H B, Yang D Z, He S Y 2012 Nucl. Instr. Meth. Phys. Res. A 670 6

    [13]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin 58 5560 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560]

    [14]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [15]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G H, Fleetwood D M, Dodd P E, Reber C A, Witczak S C, Riewe L C, Hjalmarson H P, Banks J C, Doyle B L, Knapp J A 2002 IEEE Trans. Nucl. Sci 49 3171

    [16]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A, Chai F 1993 IEEE Trans. Nucl. Sci 40 1276

    [17]

    Koiser S L, Schrimpf R D, Wei A, Delaus M 1993 Bipolarbicoms Circuits & Technology Meeting 94 211

    [18]

    Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. Nucl. Sci 60 3924

    [19]

    Li X J, Liu C M, Yang J Q 2015 IEEE Trans. Device Mater. Rel 15 258

    [20]

    Li X J, Yang J Q, Liu C M 2017 IEEE Trans. Nucl. Sci 64 1905

    [21]

    Shockley W, Read W T 1952 Phys Rev 87 835

    [22]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci 55 3169

    [23]

    Galloway K F, Pease R L, Schrimpf R D, Emily D W 2013 IEEE Trans. Nucl. Sci 60 1731

    [24]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci 51 3158

    [25]

    Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M, Pantelides S T 2010 IEEE Trans. Nucl. Sci 57 3046

  • [1] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [2] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [3] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [4] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析. 物理学报, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [5] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [6] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [7] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型. 物理学报, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [8] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [9] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [10] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [12] 任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾. 基极注入强电磁脉冲对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [13] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [14] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [15] 马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌. 双极晶体管微波损伤效应与机理. 物理学报, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [16] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [17] 肖德龙, 宁成, 蓝可, 丁宁. 铝丝阵Z箍缩辐射产生机理初步研究. 物理学报, 2010, 59(1): 430-437. doi: 10.7498/aps.59.430
    [18] 柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋. 双极晶体管在强电磁脉冲作用下的损伤效应与机理. 物理学报, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [19] 毕志伟, 冯倩, 郝跃, 岳远征, 张忠芬, 毛维, 杨丽媛, 胡贵州. Al2O3介质层厚度对AlGaN/GaN金属氧化物半导体-高电子迁移率晶体管性能的影响. 物理学报, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [20] 刘贵立. 钛的腐蚀与钝化机理电子理论研究. 物理学报, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
计量
  • 文章访问数:  7127
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2018-05-23
  • 刊出日期:  2019-08-20

/

返回文章
返回