搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响

杨静洁 赵金良 许磊 张红国 岳明 刘丹敏 蒋毅坚

引用本文:
Citation:

间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响

杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound

Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian
PDF
导出引用
  • 研究了金属化合物LaFe11.5Al1.5Hx (x=0,0.12,0.6,1.3),LaFe11.5Al1.5By (y=0.1,0.2,0.3)和LaFe11.5Al1.5Cz (z=0.1,0.2,0.3,0.4,0.5)的磁性、结构和磁热效应.金属化合物样品均形成了良好的NaZn13型单相结构.基于固相-气相反应或者固相-固相反应引入间隙H,B,C原子后,磁性基态从反铁磁态变为铁磁态,饱和磁化强度(Ms)和居里温度(TC)均呈升高趋势.值得注意的是:随着B和C含量的增加,化合物的相变性质由弱一级相变过渡至二级相变;而随着H含量的增加,相变性质却从二级相变过渡至弱一级相变.同时,化合物LaFe11.5Al1.5Hx,LaFe11.5Al1.5By和LaFe11.5Al1.5Cz11.5Al1.5H1.3,LaFe11.5Al1.5B0.1和LaFe11.5Al1.5C0.2的最大磁熵变分别达到12.3,9.6和10.8 J/kg·K.此外,在0–5 T的外磁场作用下,LaFe11.5Al1.5H0.6的制冷能力达到259.2 J/kg,LaFe11.5Al1.5B0.1的制冷能力达到116.4 J/kg,而LaFe11.5Al1.5C0.1的制冷能力达到230.4 J/kg.
    Magnetic refrigeration materials based on magnetocaloric effect (MCE) attract wide attention.In the past decades, magnetic materials with MCE have been extensively studied due to their enormous potential applications in magnetic refrigeration fields.Among these materials,La (Fe,Al)13 compound is perceived to be one of the promising candidates as high-performance magnetic refrigerant because of its giant magnetic entropy change,tunable Curie temperature,low cost and toxin-free.For LaFe13-xAlx compounds,previous studies showed that the TC can increase by substituting Co for Fe,which leads to the value of maximum magnetic entropy change (-△SM) decreasing.In addition,the interstitial atom (N,H,C and B) can cause the lattice to expand,which shifts the anti-ferromagnetic (AFM) ground state to the ferromagnetic (FM) state.The TC increases with doping the interstitial atoms,accompanied by a remarkable change in the magnetic properties related to the magneto-volume effect.In this paper,the magnetic properties and the magnetocaloric effects of LaFe11.5Al1.5Hx(x=0,0.12,0.6 and 1.3), LaFe11.5Al1.5By(y=0.1,0.2 and 0.3) and LaFe11.5Al1.5Cz(z=0.1,0.2,0.3,0.4 and 0.5) intermetallic compounds are studied.The H,B or C atoms are inserted into the LaFe11.5Al1.5 compounds by gas-solid or solid-solid reaction.All the compounds crystallize into the cubic NaZn13-type structure.The magnetic ground state changes from the AFM to the FM state due to the introduction of interstitial atoms.Unlike the patent compound LaFe11.5Al1.5,all of the hydrides,borides and carbides display a typical FM state,which easily reach saturation under a magnetic field of 1 T.In addition,the saturation magnetization (MS) slightly increases and the Curie temperature (TC) significantly is enhanced with increasing the interstitial atom (H,B or C) content.It is attractive that the magnetic transition changes from the second-order to the weakly first-order with increasing hydrogen content,which is in contrast with the magnetic transition from the weakly first-order to the second-order with increasing boron or carbon content.All the compounds of LaFe11.5Al1.5 hydrides, borides and carbides exhibit a considerable magnetic entropy change.The values of maximum magnetic entropy change (-△SM) reach 12.3 J/kg·K for LaFe11.5Al1.5H1.3,9.6 J/kg·K for LaFe11.5Al1.5B0.1 and 10.8 J/kg·K for LaFe11.5Al1.5C0.2 under a magnetic field change of 0-5 T,respectively.And the values of refrigerant capacity (RC) reach 259.2 J/kg for LaFe11.5Al1.5H0.6,116.4 J/kg for LaFe11.5Al1.5B0.1,and 230.4 J/kg for LaFe11.5Al1.5C0.1 under a magnetic field change of 0-5 T,respectively,indicating that LaFe11.5Al1.5H0.6 compound is a promising candidate for magnetic refrigerants.
      通信作者: 赵金良, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn ; 岳明, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51401002,51171003)、北京市自然科学基金(批准号:1112005)和新金属材料国家重点实验室开放基金(批准号:2015-ZD)资助的课题.
      Corresponding author: Zhao Jin-Liang, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn ; Yue Ming, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51401002, 51171003), the Beijing Natural Science Foundation, China (Grant No. 1112005), and Open Fund Funded Project of the State Key Laboratory of New Metal Materials, China (Grant No. 2015-ZD).
    [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Pecharsky V K, Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494

    [3]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [4]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [5]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [6]

    Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X 2009 Phys. Rev. B 80 174415

    [7]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [8]

    Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B 2009 J. Appl. Phys. 105 07A915

    [9]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Supercond. Nov. Magn. 27 1899

    [10]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [11]

    van der Kraan A M, Buschow K H J, Palstra T T M 1983 Hyperfine Int. 16 717

    [12]

    Palstra T T M, Nieuwenhuys G J, Mydosh J A, Buschow K H J 1985 Phys. Rev. B 31 4622

    [13]

    Hu F X, Shen B G, Sun J R, Cheng Z H 2001 Phys. Rev. B 64 012409

    [14]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 1999 J. Magn. Magn. Mater. 195 391

    [15]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 2000 J. Appl. Phys. 87 5284

    [16]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 J. Phys.: Condens. Matter 16 2103

    [17]

    Chen J, Zhang H W, Zhang L G, Dong Q Y, Wang R W 2006 Chin. Phys. 15 845

    [18]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Alloys Compd. 591 143

    [19]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese) [张登奎, 赵金良, 张红国, 岳明 2014 物理学报 63 197501]

    [20]

    Zhang D K, Zhao J L, Shen J, Zhang H G, Yue M 2014 J. Appl. Phys. 115 183908

    [21]

    Liu J P, Tang N, de Boer F R, de Chatel P F, Buschow K H J 1995 J. Magn. Magn. Mater. 140 1035

    [22]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y 2002 J. Appl. Phys. 91 8882

    [23]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y, Matsubara E 2001 J. Alloys Compd. 316 70

    [24]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804

    [25]

    Li Z W, Morrish A H 1997 Phys. Rev. B 55 3670

    [26]

    Cam Thanh D T, Brck E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J 2006 J. Appl. Phys. 99 08Q107

    [27]

    Fujii H, Sun H 1995 in: Buschow K H J ed. Handbook of Magnetic Materials (vol. 9) (Amsterdam: Elsevier) pp303-311

    [28]

    Liu X B, Altounian Z, Ryan D H 2004 J. Phys. D: Appl. Phys. 37 2469

    [29]

    Liu X B, Ryan D H, Altounian Z 2004 J. Magn. Magn. Mater. 270 305

    [30]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [31]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Bruck E 2009 J. Magn. Magn. Mater. 321 3559

  • [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Pecharsky V K, Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494

    [3]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [4]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [5]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [6]

    Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X 2009 Phys. Rev. B 80 174415

    [7]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [8]

    Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B 2009 J. Appl. Phys. 105 07A915

    [9]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Supercond. Nov. Magn. 27 1899

    [10]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [11]

    van der Kraan A M, Buschow K H J, Palstra T T M 1983 Hyperfine Int. 16 717

    [12]

    Palstra T T M, Nieuwenhuys G J, Mydosh J A, Buschow K H J 1985 Phys. Rev. B 31 4622

    [13]

    Hu F X, Shen B G, Sun J R, Cheng Z H 2001 Phys. Rev. B 64 012409

    [14]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 1999 J. Magn. Magn. Mater. 195 391

    [15]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 2000 J. Appl. Phys. 87 5284

    [16]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 J. Phys.: Condens. Matter 16 2103

    [17]

    Chen J, Zhang H W, Zhang L G, Dong Q Y, Wang R W 2006 Chin. Phys. 15 845

    [18]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Alloys Compd. 591 143

    [19]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese) [张登奎, 赵金良, 张红国, 岳明 2014 物理学报 63 197501]

    [20]

    Zhang D K, Zhao J L, Shen J, Zhang H G, Yue M 2014 J. Appl. Phys. 115 183908

    [21]

    Liu J P, Tang N, de Boer F R, de Chatel P F, Buschow K H J 1995 J. Magn. Magn. Mater. 140 1035

    [22]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y 2002 J. Appl. Phys. 91 8882

    [23]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y, Matsubara E 2001 J. Alloys Compd. 316 70

    [24]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804

    [25]

    Li Z W, Morrish A H 1997 Phys. Rev. B 55 3670

    [26]

    Cam Thanh D T, Brck E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J 2006 J. Appl. Phys. 99 08Q107

    [27]

    Fujii H, Sun H 1995 in: Buschow K H J ed. Handbook of Magnetic Materials (vol. 9) (Amsterdam: Elsevier) pp303-311

    [28]

    Liu X B, Altounian Z, Ryan D H 2004 J. Phys. D: Appl. Phys. 37 2469

    [29]

    Liu X B, Ryan D H, Altounian Z 2004 J. Magn. Magn. Mater. 270 305

    [30]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [31]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Bruck E 2009 J. Magn. Magn. Mater. 321 3559

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [3] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征. 物理学报, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [4] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀. 物理学报, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [5] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [6] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [7] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [8] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [9] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [10] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能. 物理学报, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [12] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [13] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应. 物理学报, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [15] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [16] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究. 物理学报, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [18] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [19] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常. 物理学报, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  6434
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-16
  • 修回日期:  2018-01-20
  • 刊出日期:  2018-04-05

/

返回文章
返回