-
对65 nm互补金属氧化物半导体工艺下不同尺寸的N型和P型金属氧化物半导体场效应晶体管(NMOSFET和PMOSFET)开展了不同偏置条件下电离总剂量辐照实验.结果表明:PMOSFET的电离辐射响应与器件结构和偏置条件均有很强的依赖性,而NMOSFET表现出较强的抗总剂量性能;在累积相同总剂量时,PMOSFET的辐照损伤远大于NMOSFET.结合理论分析和数值模拟给出了PMOSFET的辐射敏感位置及辐射损伤的物理机制.
-
关键词:
- 金属氧化物半导体场效应晶体管 /
- 60Co γ辐照 /
- 辐射损伤 /
- 数值仿真
Radiation effect of deep submicron semiconductor device has been extensively studied in recent years. However, fewer researches laid emphasis on the degradation characterization induced by total ionizing dose (TID) damage in nano-device. The purpose of this paper is to analyze the TID effect on the 65 nm commercial complementary metal oxide semiconductor transistor. The n-type and p-type metal oxide semiconductor field effect transistors (NMOSFET and PMOSFET) with different sizes are irradiated by 60Co γ rays at 50 rad (Si)/s, and TID is about 1 Mrad (Si). Static drain-current ID versus gate-voltage VG electrical characteristics are measured with semiconductor parameter measurement equipment. The irradiation bias of NMOSFET is as follows:the ON state is under gate voltage VG=+1.32 V, drain voltage VD is equal to source voltage VS (VD=VS=0), and the OFF state is under drain voltage VD=+1.32 V, gate voltage VG is equal to source voltage VS (VG=VS=0). The irradiation bias of PMOSFET is follows:the ON state is under gate voltage VG=0 V, drain voltage VD is equal to source voltage VS (VD=VS=1.32 V), and the OFF state is under VD=VG=VS=+1.32 V. The experimental results show that the negative shifts in the threshold voltage are observed in PMOSFET after irradiation. Besides, for PMOSFET the degradation of the ON state during radiation is more severe than that of the OFF state, whereas comparatively small effect are present in NMOSFET. Through experimental data and theoretical analysis, we find that the changes in the characteristics of the irradiated devices are attributed to the building up of positive oxide charges in the light doped drain (LDD) spacer oxide, rather than shallow trench isolation oxide degradation. The positive charges induced by TID in PMOSFET LDD spacer oxide will lead to the change of hole concentration in channel, which causes the threshold voltage to shift. What is more, the difference in electric field in the LDD spacer is the main reason for the difference in the radiation response between the two radiation bias conditions. Radiation-enabled technology computer aided design used to establish two-dimensional mode of the transistor. The simulation results of ID-VG curves are in good agreement with the experimental results. Combining theoretical analysis and numerical simulation, the radiation sensitive regions and the damage physical mechanism and radiation sensitivity regions of PMOSFETs are given. This work provides the helpful theory guidance and technical supports for the radiation hardening of the nano-devices used in the radiation environments.-
Keywords:
- complementary metal oxide semiconductor /
- 60Co γ irradiation /
- ionization damage /
- simulation method
[1] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
[2] Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]
[3] Qiao H, Li T, Gong H M, Li X Y 2016 J. Infrared Millim. Waves 35 129
[4] Schwank J R, Shaneyfelt M R, Fleetwood D M, FelixJ A, Dodd P E, Philippe P, Véronique F C 2008 Trans. Nucl. Sci. 55 1833
[5] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332
[6] Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941
[7] Ratti L, Gaioni L, Manghisoni M, Traversi G, Pantano D 2008 IEEE Trans. Nucl. Sci. 55 1992
[8] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[9] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103]
[10] Peng C, Hu Z Y, Ning B X, Huang H X, Fan S, Zhang Z X, Bi D W, En Y F 2014 Chin. Phys. B 23 090702
[11] Ding L L, Simone G, Marta B, Serena M, Dario B, Alessandro P 2015 IEEE Trans. Nucl. Sci. 62 2899
[12] Gerardin S, Bagatin M, Cornale D, Ding L, Mattiazzo S, Paccagnella A, Faccio F, Michelis S 2015 IEEE Trans. Nucl. Sci. 62 2398
[13] Yu C L 2005 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [于春利 2005 博士学位论文 (西安:西安电子科技大学)]
[14] Gerardin S, Gasperin A, Cester A, Paccagnella A, Ghidini G, Candelori A, Bacchetta N, Bisello D, Glaser M 2006 IEEE Trans. Nucl. Sci. 53 1917
[15] He B P, Wang Z J, Sheng J K, Huang S Y 2016 J. Semiconductors 37 124003
[16] Shi M, Wu G J
[17] Liu Z H, Hu C M, Huang J H, Chan T Y, Jeng M C, Ko P K, Cheng Y C 1993 Trans. Nucl. Sci. 40 86
[18] Zebrev G I, Petrov A S, Useinov R G, Ikhsanov R S, Ulimov V N, Anashin V S, Elushov I V, Drosdetsky M G, Galimov A M 2014 IEEE Trans. Nucl. Sci. 61 1785
[19] Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970 (in Chinese) [王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970]
[20] He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, W Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese) [何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]
-
[1] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
[2] Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]
[3] Qiao H, Li T, Gong H M, Li X Y 2016 J. Infrared Millim. Waves 35 129
[4] Schwank J R, Shaneyfelt M R, Fleetwood D M, FelixJ A, Dodd P E, Philippe P, Véronique F C 2008 Trans. Nucl. Sci. 55 1833
[5] Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332
[6] Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941
[7] Ratti L, Gaioni L, Manghisoni M, Traversi G, Pantano D 2008 IEEE Trans. Nucl. Sci. 55 1992
[8] Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[9] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103]
[10] Peng C, Hu Z Y, Ning B X, Huang H X, Fan S, Zhang Z X, Bi D W, En Y F 2014 Chin. Phys. B 23 090702
[11] Ding L L, Simone G, Marta B, Serena M, Dario B, Alessandro P 2015 IEEE Trans. Nucl. Sci. 62 2899
[12] Gerardin S, Bagatin M, Cornale D, Ding L, Mattiazzo S, Paccagnella A, Faccio F, Michelis S 2015 IEEE Trans. Nucl. Sci. 62 2398
[13] Yu C L 2005 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [于春利 2005 博士学位论文 (西安:西安电子科技大学)]
[14] Gerardin S, Gasperin A, Cester A, Paccagnella A, Ghidini G, Candelori A, Bacchetta N, Bisello D, Glaser M 2006 IEEE Trans. Nucl. Sci. 53 1917
[15] He B P, Wang Z J, Sheng J K, Huang S Y 2016 J. Semiconductors 37 124003
[16] Shi M, Wu G J
[17] Liu Z H, Hu C M, Huang J H, Chan T Y, Jeng M C, Ko P K, Cheng Y C 1993 Trans. Nucl. Sci. 40 86
[18] Zebrev G I, Petrov A S, Useinov R G, Ikhsanov R S, Ulimov V N, Anashin V S, Elushov I V, Drosdetsky M G, Galimov A M 2014 IEEE Trans. Nucl. Sci. 61 1785
[19] Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970 (in Chinese) [王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970]
[20] He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, W Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese) [何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]
计量
- 文章访问数: 6622
- PDF下载量: 124
- 被引次数: 0