搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理

李少华 李海涛 江亚晓 涂丽敏 李文标 潘玲 杨仕娥 陈永生

引用本文:
Citation:

高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理

李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生

Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells

Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng
PDF
导出引用
  • 基于有机-无机杂化钙钛矿材料的太阳电池具有能量转换效率高和制备工艺简单等优点,引起了学术界的高度关注.其中平面异质结结构太阳电池具有结构简单,可与其他类型电池相兼容以构筑叠层电池设计,以及可低温制备等诸多优点,成为当前的一个重要研究方向.然而,电池性能的优劣与钙钛矿薄膜质量的高低有着直接的联系.本文对钙钛矿材料的特性、一步溶液法制备薄膜的成核-生长机理、电池结构的演变等进行了概述,其中重点介绍了高质量钙钛矿薄膜溶液法制备过程的一些最新的质量控制方法;最后对钙钛矿太阳电池的发展及存在问题进行了总结和展望,为今后的研究提供参考.
    The energy extracted from solar radiation is the most abundant and accessible source of renewable energy, which will become progressively more important as time goes on. Solar cells are regarded as one of the most promising candidates for generating renewable clean energy. Recently, a new class of semiconducting material called organic-inorganic halide perovskite has received great attention of academia, and the record power conversion efficiency (PCE) of perovskite solar cell (PSC) rapidly increased from 3.8% in 2009 to 22.7% in late 2017 through intensive research due to some advantages as follows. 1) Excellent optoelectronic property. Perovskite materials exhibit excellent properties, including long diffusion length, high carrier mobility, and high absorption coefficient. 2) Low cost. The ingredients of perovskite materials are cheap, and PSCs can be manufactured by a solution process. 3) Tunable bandgap. Perovskite materials have highly tunable bandgap (1.2-2.2 eV), contributing to the further improvement in PCE of single junction PSCs by realizing the ideal bandgap (1.3-1.4 eV) as demonstrated by the Shockley-Queisser detailed balanced calculation. The basic architectures of PSCs are divided mainly into mesoscopic and planar heterojunction structures. Compared with the former configuration, the later configuration combined with low-temperature processable interlayers provides a method of fabricating flexible PSCs and tandem PSCs. Furthermore, the nonuse of the mesoscopic structure simplifies the structure of PSCs and reduces the cost and time of fabrication. The key requirement to achieve an efficient and reproducible planar heterojunction PSCs is that the perovskite layer should be uniform, continuous, and pinhole free to minimize shunting pathways. So, significant research effort is being devoted to the quality management of perovskite films with the goal of achieving the controllable preparation, including the optimization of their morphology (uniformity, coverage, roughness) and microstructure (grain size/distribution, texture), and the elimination of defects (voids, pinholes, grain boundaries), which influence the PSC performance directly. Especially for the one-step solution coating method, the film quality of perovskite on different planar substrates under varied deposition conditions exhibits a large difference, due to the complex crystallization process and the heightened sensitivity to environmental conditions. In this paper, the characteristics of perovskite materials, the nucleation-growth mechanism of films in the one-step solution method, and the evolution of cell structures are described briefly. The latest quality control methods of high-quality perovskite films prepared by solution method are then discussed emphatically. Finally, to provide references for the future research, the development and existing problems of PSCs are addressed and prospected.
      通信作者: 陈永生, chysh2003@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574129)资助的课题.
      Corresponding author: Chen Yong-Sheng, chysh2003@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574129).
    [1]

    Ono L K, Qi Y B 2018 J. Phys. D: Appl. Phys. 51 093001

    [2]

    Correa-Baena J P, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A 2017 Science 358 739

    [3]

    Fu K L, Zhou Q, Chen Y S, Lu J X, Yang S E 2015 J. Opt. 17 105904

    [4]

    Shi Z F, Li S, Li Y, Ji H F, Li X J, Wu D, Xu T T, Chen Y S, Tian Y T, Zhang Y T, Shan C X, Du G T 2018 ACS Nano 12 1462

    [5]

    Shi Z F, Sun X G, Wu D, Xu T T, Tian Y T, Zhang Y T, Li X J, Du G T 2016 J. Mater. Chem. 4 8373

    [6]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401 (in Chinese) [王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401]

    [7]

    Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801 (in Chinese) [陈亮, 张利伟, 陈永生 2018 物理学报 67 028801]

    [8]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [9]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [10]

    NREL Chart, https://www.nrel.gov/pv/assets/images/efficiency-chart.png [2018-4-25]

    [11]

    Stamplecoskie K G, Manser J S, Kamat P V 2015 Energy Environ. Sci. 8 208

    [12]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H j, Sarkar A, Nazeeruddin Md K, Gratzel M, Seok S I 2013 Nat. Photon. 7 486

    [13]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903

    [14]

    Bai Y B, Wang Q Y, L R T, Zhu H W, Kang F Y 2016 Chin. Sci. Bull. 61 489 (in Chinese) [白宇冰, 王秋莹, 吕瑞涛, 朱宏伟, 康飞宇 2016 科学通报 61 489]

    [15]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [16]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grtze M, Park N G 2012 Sci. Rep. 2 591

    [17]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [18]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [19]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [20]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [21]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [22]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [23]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001

    [24]

    Listorti A, Juarez-Perez E J, Frontera C, Roiati V, Garcia-Andrade L, Colella S, Rizzo A, Ortiz P, Mora-Sero I 2015 J. Phys. Chem. Lett. 6 1628

    [25]

    Park B W, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [26]

    Zhou Y Y, Game O S, Pang S P, Padture N P 2015 J. Phys. Chem. Lett. 6 4827

    [27]

    Venables J A, Spiller G D T, Hanbucken M 1984 Rep. Prog. Phys. 47 399

    [28]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [29]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [30]

    Zheng Y C, Yang S, Chen X, Chen Y, Hou Y, Yang H G 2015 Chem. Mater. 27 5116

    [31]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [32]

    Moore D T, Sai H, Tan K W, Smilgies D M, Zhang W, Snaith H J, Wiesner U, Estroff L A 2015 J. Am. Chem. Soc. 137 2350

    [33]

    Zhang W, Saliba M, Moore D T, Pathak S K, Horantner M T, Stergiopoulos T, Stranks S D, Eperon G E, Alexander-Webber J A, Abate A 2015 Nat. Commun. 6 6142

    [34]

    Bai S, Sakai N, Zhan W, Wang Z P, Wang J T W, Gao F, Snaith H J 2017 Chem. Mater. 29 462

    [35]

    Sakai N, Wang Z P, Burlakov V M, Lim J, McMeekin D, Pathak S, Snaith H J 2017 Small 13 1602808

    [36]

    Li S S, Chang C H, Wang Y C, Lin C W, Wang D Y, Lin J C, Chen C C, Sheu H S, Chia H C, Wu W R 2016 Energy Environ. Sci. 9 1282

    [37]

    Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142

    [38]

    Kim D H, Park J, Li Z, Yang M J, Park J S, Park I J, Kim J Y, Berry J J, Rumbles G, Zhu K 2017 Adv. Mater. 29 1606831

    [39]

    Li H T, Jiang Y X, Tu L M, Li S H, Pan L, Li W B, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 053301 (in Chinese) [李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生 2018 物理学报 67 053301]

    [40]

    Foley B J, Girard J, Sorenson B A, Chen A Z, Niezgoda J S, Alpert M R, Harper A F, Smilgies D M, Clancy P, Saidi W A 2017 J. Mater. Chem. A 5 113

    [41]

    Chen J Z, Xiong Y L, Rong Y G, Mei A Y, Sheng Y S, Jiang P, Hu Y, Li X, Han H W 2016 Nano Energy 27 130

    [42]

    Cai B, Zhang W H, Qiu J S 2015 Chin. J. Catal. 36 1183

    [43]

    Rong Y G, Venkatesan S, Guo R, Wang Y N, Bao J M, Li W Z, Fan Z Y, Yao Y 2016 Nanoscale 8 12892

    [44]

    Liu Z H, Hu J N, Jiao H Y, Li L, Zheng G H J, Chen Y H, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774

    [45]

    Yan K Y, Long M Z, Zhang T K, Wei Z H, Chen H N, Yang S H, Xu J B 2015 J. Am. Chem. Soc. 137 4460

    [46]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934

    [47]

    Tsai H, Nie W Y, Lin Y H, Blancon J C, Tretiak S, Even J, Gupta G, Ajayan P M, Mohite A D 2017 Adv. Energy Mater. 7 1602159

    [48]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [49]

    Wang Z W, Zhou Y Y, Pang S P, Xiao Z W, Zhang J L, Chai W Q, Xu H X, Liu Z H, Nitin P, Padture, Cui C L 2015 Chem. Mater. 27 7149

    [50]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602

    [51]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815

    [52]

    Song X, Wang W, Sun P, Ma W, Chen Z K 2015 Appl. Phys. Lett. 106 033901

    [53]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Hen A K Y 2014 Adv. Mater. 26 3748

    [54]

    Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G 2015 J. Am. Chem. Soc. 137 8696

    [55]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232

    [56]

    Li M J, Li B, Cao G Z, Tian J J 2017 J. Mater. Chem. A 5 21313

    [57]

    Li B, Li M J, Fei C B, Cao G Z, Tian J J 2017 J. Mater. Chem. A 5 24168

    [58]

    Si H N, Liao Q L, Kang Z, Ou Y, Meng J J, Liu Y C, Zhang Z, Zhang Y 2017 Adv. Funct. Mater. 27 1701804

    [59]

    Wu Y Z, Xie F X, Chen H, Yang X D, Su H M, Cai M L, Zhou Z M, Takeshi N, Han L Y 2017 Adv. Mater. 29 1701073

    [60]

    Huang Z Q, Hu X T, Liu C, Tan L C, Chen Y W 2017 Adv. Funct. Mater. 27 1703061

    [61]

    Fei C B, Li B, Zhang R, Fu H Y, Tian J J, Cao G Z 2017 Adv. Energy Mater. 7 1602017

    [62]

    Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874

    [63]

    Li H S, Li Y S, Li Y M, Shi J J, Zhang H Y, Xu X, Wu J H, Wu H J, Luo Y H, Li D M, Meng Q B 2017 Nano Energy 42 222

    [64]

    Sun M N, Zhang F, Liu H L, Li X G, Xiao Y, Wang S R 2017 J. Mater. Chem. A 5 13448

    [65]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376

    [66]

    Long M Z, Zhang T K, Chai Y, Ng C F, Mak T C W, Xu J B, Yan K Y 2016 Nat. Commun. 7 13503

    [67]

    Noel N K, Habisreutinger S N, Wenger B, Klug M T, Horantner M T, Johnston M B, Nicholas R J, Moore D T, Snaith H J 2017 Energy Environ. Sci. 10 145

    [68]

    Fang X, Wu Y H, Lu Y T, Sun Y, Zhang S, Zhang J, Zhang W H, Yuan N Y, Ding J N 2017 J. Mater. Chem. C 5 842

    [69]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Grtze M, Han L Y 2017 Nature 550 92

    [70]

    Kang R, Kim J E, Yeo J S, Lee S, Jeon Y J, Kim D Y 2014 J. Phys. Chem. C 118 26513

    [71]

    Yu Y, Yang S W, Lei L, Liu Y 2017 Nanoscale 9 2569

    [72]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [73]

    Liao H C, Guo P J, Hsu C P, Lin M, Wang B H, Zeng L, Huang W, Soe C M M, Su W F, Bedzyk M J, Wasielewski M R, Facchetti A, Chang R P H, Kanatzidis M G, Marks T J 2017 Adv. Energy Mater. 7 1601660

    [74]

    Huang F Z, Dkhissi Y, Huang W C, Xiao M D, Benesperi I, Rubanov S, Zhu Y, Lin X F, Jiang L C, Zhou Y C, Gray-Weale A, Etheridge J, McNeill C R, Caruso R A, Bach U, Spiccia L, Cheng Y B 2014 Nano Energy 10 10

    [75]

    Li X, Bi D Q, Yi C Y, Dcoppet J D, Luo J S, Zakeeruddin S M, Hagfeldt A, Grtze M 2016 Science 353 58

    [76]

    Ding B, Li Y, Huang S Y, Chu Q Q, Li C X, Li C J, Yang G J 2017 J. Mater. Chem. A 5 6840

    [77]

    Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 53 9898

    [78]

    Zhou Y Y, Yang M J, Wu W W, Vasiliev A L, Zhu K, Padture N P 2015 J. Mater. Chem. A 3 8178

    [79]

    Rong Y G, Tang Z J, Zhao Y F, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M, Yao Y 2015 Nanoscale 7 10595

    [80]

    Yin X W, Yao Z B, Luo Q, Dai X Z, Zhou Y, Zhang Y, Zhou Y Y, Luo S P, Li J B, Wang N, Lin H 2017 ACS Appl. Mater. Interfaces 9 2439

    [81]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S H, Correa-Baena J P, Carmona C R, Richardson G, Foster J M, de Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Gratzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604

    [82]

    Bi D Q, Luo J S, Zhang F, Magrez A, Athanasopoulou E N, Hagfeldt A, Gratzel M 2017 Chem. Sus. Chem. 10 1624

    [83]

    Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A, Han L Y 2016 Nat. Energy 1 16148

    [84]

    DeQuilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683

    [85]

    Ngo T T, Suarez I, Antonicelli G, Cortizo-Lacalle D, Martinez-Pastor J P, Mateo-Alonso A, Mora-Sero I 2017 Adv. Mater. 29 1604056

    [86]

    Kumar P, Zhao B D, Friend R H, Sadhanala A, Narayan K S 2017 ACS Appl. Mater. Interfaces 2 81

    [87]

    Zhang F, Shi W D, Luo J S, Pellet N, Yi C Y, Li X, Zhao X M, Dennis T J S, Li X G, Wang S R, Xiao Y, Zakeeruddin S M, Bi D Q, Grtze M 2017 Adv. Mater. 29 1606806

    [88]

    Ren Y K, Ding X H, Wu Y H, Zhu J, Hayat T, Alsaedi A, Xu Y F, Li Z Q, Yang S F, Dai S Y 2017 J. Mater. Chem. A 5 20327

    [89]

    Ye J J, Zhang X H, Zhu L Z, Zheng H Y, Liu G Z, Wang H X, Hayat T, Pan X, Da S Y 2017 Sustainable Energy Fuels 1 907

    [90]

    Troughton J, Hooper K, Watson T M 2017 Nano Energy 39 60

    [91]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [92]

    Wang Y R Q, Li J W, Li Q, Zhu W D, Yu T, Chen X Y, Yin L A, Zhou Y, Wang X Y, Zou Z G 2017 Chem. Commun. 53 5032

    [93]

    Zhu W D, Bao C X, L B H, Li F M, Yi Y, Wang Y R Q, Yang J, Wang X Y, Yu T, Zou Z G 2016 J. Mater. Chem. A 4 12535

    [94]

    Zhu W D, Kang L, Yu T, L B H, Wang Y R Q, Chen X Y, Wang X Y, Zhou Y, Zou Z G 2017 ACS Appl. Mater. Inter. 9 6104

    [95]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [96]

    Liu J, Gao C, He X L, Ye Q Y, Ouyang L Q, Zhuang D M, Liao C, Mei J, Lau W M 2015 ACS Appl. Mater. Interfaces 7 24008

    [97]

    Jiang Y, Juarez-Perez E J, Ge Q Q, Wang S H, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Mater. Horiz. 3 548

    [98]

    Ummadisingu A, Steier L, Seo J Y, Matsui T, Abate A, Tress W, Grtze M 2017 Nature 545 208

    [99]

    Xie F X, Chen C C, Wu Y Z, Li X, Cai M L, Liu X, Yang X D, Han L Y 2017 Energy Environ. Sci. 10 1942

    [100]

    Sanchez S, Hua X, Phung N, Steiner U, Abate A 2018 Adv. Energy Mater. 8 1702915

    [101]

    Zhao Y X, Zhu K 2014 Chem. Commun. 50 1605

    [102]

    Zhou Z M, Wang Z W, Zhou Y Y, Pang S P, Wang D, Xu H X, Liu Z H, Padture N P, Cui G L 2015 Angew. Chem. Int. Ed. 54 9705

    [103]

    Li C W, Pang S P, Xu H X, Cui G L 2017 Sol. RRL 1 1700076

    [104]

    Raga S R, Jiang Y, Ono L K, Qi Y B 2017 Energy Technol. 5 1750

    [105]

    Zhao T, Williams S T, Chueh C C, de Quilettes D W, Liang P W, Ginger D S, Jen A K Y 2016 RSC Adv. 6 27475

    [106]

    Chang Y, Wang L, ZhangJ L, Zhou Z M, Li C W, Chen B B, Etgar L, Cui G L, Pang S P 2017 J. Mater. Chem. A 5 4803

    [107]

    Chih Y K, Wang J C, Yang R T, Liu C C, Chang Y C, Fu Y S, Lai W C, Chen P, Wen T C, Huang Y C, Tsao C S, Guo T F 2016 Adv. Mater. 28 8687

    [108]

    Hong L, Hu Y, Mei A Y, Sheng Y S, Jiang P, Tian C B, Rong Y G, Han H W 2017 Adv. Funct. Mater. 27 1703060

    [109]

    Jiang Y X, Tu L M, Li H T, Li S H, Yang S E, Chen Y S 2018 Crystals 8 44

    [110]

    Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016 J. Am. Chem. Soc. 138 5535

    [111]

    Jain S M, Qiu Z, Haggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770

    [112]

    Jacobs D L, Zang L 2016 Chem. Commun. 52 10743

    [113]

    Pang S P, Zhou Y Y, Wang Z W, Yang M J, Krause A R, Zhou Z M, Zhu K, Padture N P, Cui G L 2016 J. Am. Chem. Soc. 138 750

    [114]

    Longa M Z, Zhang T K, Zhu H Y, Li G X, Wang F, Guo W Y, Chai Y, Chen W, Li Q, Wong K S, Xu J B, Yan K Y 2017 Nano Energy 33 485

    [115]

    Zhang T Y, Guo N J, Li G, Qian X F, Zhao Y X 2016 Nano Energy 26 50

    [116]

    Raga S R, Ono L K, Qi Y B 2016 J. Mater. Chem. A 4 2494

    [117]

    Zhang T Y, Li G, Xu F, Wang Y P, Guo N J, Qian X F, Zhao Y X 2016 Chem. Commun. 52 11080

    [118]

    Zong Y X, Zhou Y Y, Ju M G, Garces H F, Krause A R, Ji F X, Cui G L, Zeng X C, Padture N P, Pang S P 2016 Angew. Chem. Int. Ed. 55 14723

  • [1]

    Ono L K, Qi Y B 2018 J. Phys. D: Appl. Phys. 51 093001

    [2]

    Correa-Baena J P, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A 2017 Science 358 739

    [3]

    Fu K L, Zhou Q, Chen Y S, Lu J X, Yang S E 2015 J. Opt. 17 105904

    [4]

    Shi Z F, Li S, Li Y, Ji H F, Li X J, Wu D, Xu T T, Chen Y S, Tian Y T, Zhang Y T, Shan C X, Du G T 2018 ACS Nano 12 1462

    [5]

    Shi Z F, Sun X G, Wu D, Xu T T, Tian Y T, Zhang Y T, Li X J, Du G T 2016 J. Mater. Chem. 4 8373

    [6]

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401 (in Chinese) [王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401]

    [7]

    Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801 (in Chinese) [陈亮, 张利伟, 陈永生 2018 物理学报 67 028801]

    [8]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [9]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [10]

    NREL Chart, https://www.nrel.gov/pv/assets/images/efficiency-chart.png [2018-4-25]

    [11]

    Stamplecoskie K G, Manser J S, Kamat P V 2015 Energy Environ. Sci. 8 208

    [12]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H j, Sarkar A, Nazeeruddin Md K, Gratzel M, Seok S I 2013 Nat. Photon. 7 486

    [13]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903

    [14]

    Bai Y B, Wang Q Y, L R T, Zhu H W, Kang F Y 2016 Chin. Sci. Bull. 61 489 (in Chinese) [白宇冰, 王秋莹, 吕瑞涛, 朱宏伟, 康飞宇 2016 科学通报 61 489]

    [15]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [16]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grtze M, Park N G 2012 Sci. Rep. 2 591

    [17]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [18]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [19]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [20]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [21]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [22]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [23]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001

    [24]

    Listorti A, Juarez-Perez E J, Frontera C, Roiati V, Garcia-Andrade L, Colella S, Rizzo A, Ortiz P, Mora-Sero I 2015 J. Phys. Chem. Lett. 6 1628

    [25]

    Park B W, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [26]

    Zhou Y Y, Game O S, Pang S P, Padture N P 2015 J. Phys. Chem. Lett. 6 4827

    [27]

    Venables J A, Spiller G D T, Hanbucken M 1984 Rep. Prog. Phys. 47 399

    [28]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [29]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [30]

    Zheng Y C, Yang S, Chen X, Chen Y, Hou Y, Yang H G 2015 Chem. Mater. 27 5116

    [31]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [32]

    Moore D T, Sai H, Tan K W, Smilgies D M, Zhang W, Snaith H J, Wiesner U, Estroff L A 2015 J. Am. Chem. Soc. 137 2350

    [33]

    Zhang W, Saliba M, Moore D T, Pathak S K, Horantner M T, Stergiopoulos T, Stranks S D, Eperon G E, Alexander-Webber J A, Abate A 2015 Nat. Commun. 6 6142

    [34]

    Bai S, Sakai N, Zhan W, Wang Z P, Wang J T W, Gao F, Snaith H J 2017 Chem. Mater. 29 462

    [35]

    Sakai N, Wang Z P, Burlakov V M, Lim J, McMeekin D, Pathak S, Snaith H J 2017 Small 13 1602808

    [36]

    Li S S, Chang C H, Wang Y C, Lin C W, Wang D Y, Lin J C, Chen C C, Sheu H S, Chia H C, Wu W R 2016 Energy Environ. Sci. 9 1282

    [37]

    Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142

    [38]

    Kim D H, Park J, Li Z, Yang M J, Park J S, Park I J, Kim J Y, Berry J J, Rumbles G, Zhu K 2017 Adv. Mater. 29 1606831

    [39]

    Li H T, Jiang Y X, Tu L M, Li S H, Pan L, Li W B, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 053301 (in Chinese) [李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生 2018 物理学报 67 053301]

    [40]

    Foley B J, Girard J, Sorenson B A, Chen A Z, Niezgoda J S, Alpert M R, Harper A F, Smilgies D M, Clancy P, Saidi W A 2017 J. Mater. Chem. A 5 113

    [41]

    Chen J Z, Xiong Y L, Rong Y G, Mei A Y, Sheng Y S, Jiang P, Hu Y, Li X, Han H W 2016 Nano Energy 27 130

    [42]

    Cai B, Zhang W H, Qiu J S 2015 Chin. J. Catal. 36 1183

    [43]

    Rong Y G, Venkatesan S, Guo R, Wang Y N, Bao J M, Li W Z, Fan Z Y, Yao Y 2016 Nanoscale 8 12892

    [44]

    Liu Z H, Hu J N, Jiao H Y, Li L, Zheng G H J, Chen Y H, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774

    [45]

    Yan K Y, Long M Z, Zhang T K, Wei Z H, Chen H N, Yang S H, Xu J B 2015 J. Am. Chem. Soc. 137 4460

    [46]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934

    [47]

    Tsai H, Nie W Y, Lin Y H, Blancon J C, Tretiak S, Even J, Gupta G, Ajayan P M, Mohite A D 2017 Adv. Energy Mater. 7 1602159

    [48]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [49]

    Wang Z W, Zhou Y Y, Pang S P, Xiao Z W, Zhang J L, Chai W Q, Xu H X, Liu Z H, Nitin P, Padture, Cui C L 2015 Chem. Mater. 27 7149

    [50]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602

    [51]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815

    [52]

    Song X, Wang W, Sun P, Ma W, Chen Z K 2015 Appl. Phys. Lett. 106 033901

    [53]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Hen A K Y 2014 Adv. Mater. 26 3748

    [54]

    Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G 2015 J. Am. Chem. Soc. 137 8696

    [55]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232

    [56]

    Li M J, Li B, Cao G Z, Tian J J 2017 J. Mater. Chem. A 5 21313

    [57]

    Li B, Li M J, Fei C B, Cao G Z, Tian J J 2017 J. Mater. Chem. A 5 24168

    [58]

    Si H N, Liao Q L, Kang Z, Ou Y, Meng J J, Liu Y C, Zhang Z, Zhang Y 2017 Adv. Funct. Mater. 27 1701804

    [59]

    Wu Y Z, Xie F X, Chen H, Yang X D, Su H M, Cai M L, Zhou Z M, Takeshi N, Han L Y 2017 Adv. Mater. 29 1701073

    [60]

    Huang Z Q, Hu X T, Liu C, Tan L C, Chen Y W 2017 Adv. Funct. Mater. 27 1703061

    [61]

    Fei C B, Li B, Zhang R, Fu H Y, Tian J J, Cao G Z 2017 Adv. Energy Mater. 7 1602017

    [62]

    Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874

    [63]

    Li H S, Li Y S, Li Y M, Shi J J, Zhang H Y, Xu X, Wu J H, Wu H J, Luo Y H, Li D M, Meng Q B 2017 Nano Energy 42 222

    [64]

    Sun M N, Zhang F, Liu H L, Li X G, Xiao Y, Wang S R 2017 J. Mater. Chem. A 5 13448

    [65]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376

    [66]

    Long M Z, Zhang T K, Chai Y, Ng C F, Mak T C W, Xu J B, Yan K Y 2016 Nat. Commun. 7 13503

    [67]

    Noel N K, Habisreutinger S N, Wenger B, Klug M T, Horantner M T, Johnston M B, Nicholas R J, Moore D T, Snaith H J 2017 Energy Environ. Sci. 10 145

    [68]

    Fang X, Wu Y H, Lu Y T, Sun Y, Zhang S, Zhang J, Zhang W H, Yuan N Y, Ding J N 2017 J. Mater. Chem. C 5 842

    [69]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Grtze M, Han L Y 2017 Nature 550 92

    [70]

    Kang R, Kim J E, Yeo J S, Lee S, Jeon Y J, Kim D Y 2014 J. Phys. Chem. C 118 26513

    [71]

    Yu Y, Yang S W, Lei L, Liu Y 2017 Nanoscale 9 2569

    [72]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [73]

    Liao H C, Guo P J, Hsu C P, Lin M, Wang B H, Zeng L, Huang W, Soe C M M, Su W F, Bedzyk M J, Wasielewski M R, Facchetti A, Chang R P H, Kanatzidis M G, Marks T J 2017 Adv. Energy Mater. 7 1601660

    [74]

    Huang F Z, Dkhissi Y, Huang W C, Xiao M D, Benesperi I, Rubanov S, Zhu Y, Lin X F, Jiang L C, Zhou Y C, Gray-Weale A, Etheridge J, McNeill C R, Caruso R A, Bach U, Spiccia L, Cheng Y B 2014 Nano Energy 10 10

    [75]

    Li X, Bi D Q, Yi C Y, Dcoppet J D, Luo J S, Zakeeruddin S M, Hagfeldt A, Grtze M 2016 Science 353 58

    [76]

    Ding B, Li Y, Huang S Y, Chu Q Q, Li C X, Li C J, Yang G J 2017 J. Mater. Chem. A 5 6840

    [77]

    Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. Int. Ed. 53 9898

    [78]

    Zhou Y Y, Yang M J, Wu W W, Vasiliev A L, Zhu K, Padture N P 2015 J. Mater. Chem. A 3 8178

    [79]

    Rong Y G, Tang Z J, Zhao Y F, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M, Yao Y 2015 Nanoscale 7 10595

    [80]

    Yin X W, Yao Z B, Luo Q, Dai X Z, Zhou Y, Zhang Y, Zhou Y Y, Luo S P, Li J B, Wang N, Lin H 2017 ACS Appl. Mater. Interfaces 9 2439

    [81]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S H, Correa-Baena J P, Carmona C R, Richardson G, Foster J M, de Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Gratzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604

    [82]

    Bi D Q, Luo J S, Zhang F, Magrez A, Athanasopoulou E N, Hagfeldt A, Gratzel M 2017 Chem. Sus. Chem. 10 1624

    [83]

    Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A, Han L Y 2016 Nat. Energy 1 16148

    [84]

    DeQuilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683

    [85]

    Ngo T T, Suarez I, Antonicelli G, Cortizo-Lacalle D, Martinez-Pastor J P, Mateo-Alonso A, Mora-Sero I 2017 Adv. Mater. 29 1604056

    [86]

    Kumar P, Zhao B D, Friend R H, Sadhanala A, Narayan K S 2017 ACS Appl. Mater. Interfaces 2 81

    [87]

    Zhang F, Shi W D, Luo J S, Pellet N, Yi C Y, Li X, Zhao X M, Dennis T J S, Li X G, Wang S R, Xiao Y, Zakeeruddin S M, Bi D Q, Grtze M 2017 Adv. Mater. 29 1606806

    [88]

    Ren Y K, Ding X H, Wu Y H, Zhu J, Hayat T, Alsaedi A, Xu Y F, Li Z Q, Yang S F, Dai S Y 2017 J. Mater. Chem. A 5 20327

    [89]

    Ye J J, Zhang X H, Zhu L Z, Zheng H Y, Liu G Z, Wang H X, Hayat T, Pan X, Da S Y 2017 Sustainable Energy Fuels 1 907

    [90]

    Troughton J, Hooper K, Watson T M 2017 Nano Energy 39 60

    [91]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [92]

    Wang Y R Q, Li J W, Li Q, Zhu W D, Yu T, Chen X Y, Yin L A, Zhou Y, Wang X Y, Zou Z G 2017 Chem. Commun. 53 5032

    [93]

    Zhu W D, Bao C X, L B H, Li F M, Yi Y, Wang Y R Q, Yang J, Wang X Y, Yu T, Zou Z G 2016 J. Mater. Chem. A 4 12535

    [94]

    Zhu W D, Kang L, Yu T, L B H, Wang Y R Q, Chen X Y, Wang X Y, Zhou Y, Zou Z G 2017 ACS Appl. Mater. Inter. 9 6104

    [95]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [96]

    Liu J, Gao C, He X L, Ye Q Y, Ouyang L Q, Zhuang D M, Liao C, Mei J, Lau W M 2015 ACS Appl. Mater. Interfaces 7 24008

    [97]

    Jiang Y, Juarez-Perez E J, Ge Q Q, Wang S H, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Mater. Horiz. 3 548

    [98]

    Ummadisingu A, Steier L, Seo J Y, Matsui T, Abate A, Tress W, Grtze M 2017 Nature 545 208

    [99]

    Xie F X, Chen C C, Wu Y Z, Li X, Cai M L, Liu X, Yang X D, Han L Y 2017 Energy Environ. Sci. 10 1942

    [100]

    Sanchez S, Hua X, Phung N, Steiner U, Abate A 2018 Adv. Energy Mater. 8 1702915

    [101]

    Zhao Y X, Zhu K 2014 Chem. Commun. 50 1605

    [102]

    Zhou Z M, Wang Z W, Zhou Y Y, Pang S P, Wang D, Xu H X, Liu Z H, Padture N P, Cui G L 2015 Angew. Chem. Int. Ed. 54 9705

    [103]

    Li C W, Pang S P, Xu H X, Cui G L 2017 Sol. RRL 1 1700076

    [104]

    Raga S R, Jiang Y, Ono L K, Qi Y B 2017 Energy Technol. 5 1750

    [105]

    Zhao T, Williams S T, Chueh C C, de Quilettes D W, Liang P W, Ginger D S, Jen A K Y 2016 RSC Adv. 6 27475

    [106]

    Chang Y, Wang L, ZhangJ L, Zhou Z M, Li C W, Chen B B, Etgar L, Cui G L, Pang S P 2017 J. Mater. Chem. A 5 4803

    [107]

    Chih Y K, Wang J C, Yang R T, Liu C C, Chang Y C, Fu Y S, Lai W C, Chen P, Wen T C, Huang Y C, Tsao C S, Guo T F 2016 Adv. Mater. 28 8687

    [108]

    Hong L, Hu Y, Mei A Y, Sheng Y S, Jiang P, Tian C B, Rong Y G, Han H W 2017 Adv. Funct. Mater. 27 1703060

    [109]

    Jiang Y X, Tu L M, Li H T, Li S H, Yang S E, Chen Y S 2018 Crystals 8 44

    [110]

    Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016 J. Am. Chem. Soc. 138 5535

    [111]

    Jain S M, Qiu Z, Haggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770

    [112]

    Jacobs D L, Zang L 2016 Chem. Commun. 52 10743

    [113]

    Pang S P, Zhou Y Y, Wang Z W, Yang M J, Krause A R, Zhou Z M, Zhu K, Padture N P, Cui G L 2016 J. Am. Chem. Soc. 138 750

    [114]

    Longa M Z, Zhang T K, Zhu H Y, Li G X, Wang F, Guo W Y, Chai Y, Chen W, Li Q, Wong K S, Xu J B, Yan K Y 2017 Nano Energy 33 485

    [115]

    Zhang T Y, Guo N J, Li G, Qian X F, Zhao Y X 2016 Nano Energy 26 50

    [116]

    Raga S R, Ono L K, Qi Y B 2016 J. Mater. Chem. A 4 2494

    [117]

    Zhang T Y, Li G, Xu F, Wang Y P, Guo N J, Qian X F, Zhao Y X 2016 Chem. Commun. 52 11080

    [118]

    Zong Y X, Zhou Y Y, Ju M G, Garces H F, Krause A R, Ji F X, Cui G L, Zeng X C, Padture N P, Pang S P 2016 Angew. Chem. Int. Ed. 55 14723

  • [1] 商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉. 基于埋底界面修饰策略制备正式钙钛矿太阳电池的研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241549
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 温亚飞, 庄园园, 王志强, 高士回. 高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究. 物理学报, 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [4] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [8] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [9] 林明月, 巨博, 李燕, 陈雪莲. 2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能. 物理学报, 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [12] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究. 物理学报, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [13] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [14] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [15] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [16] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [18] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [20] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
计量
  • 文章访问数:  9946
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2018-04-22
  • 刊出日期:  2018-08-05

/

返回文章
返回