搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟

娄钦 李涛 杨茉

引用本文:
Citation:

复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟

娄钦, 李涛, 杨茉

Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel

Lou Qin, Li Tao, Yang Mo
PDF
导出引用
  • 本文采用气-液两相流格子Boltzmann方法模拟了复杂微通道内气泡在浮力作用下的上升过程,主要研究障碍物表面润湿性、浮力大小、障碍物尺寸和气泡初始位置对气泡变形、分裂、合并的动力学行为以及对气泡上升速度、终端速度和气泡剩余质量的运动特性的影响.研究发现,障碍物表面接触角较小时气泡能够完整地通过障碍物通道,随着障碍物表面接触角增加,气泡通过障碍物通道时严重变形,并会发生分裂行为,使得部分气泡黏附在障碍物表面,从而导致气泡到达终端时质量减少.相应地,气泡上升速度以及终端速度也随着微通道表面接触角的增加而减小.另一方面,随着浮力的增加,气泡在上升过程中更容易发生分裂和合并现象,且气泡剩余质量和终端速度随着浮力的增加呈对数形式增加.此外,随着微通道障碍物半径增加,气泡剩余质量首先缓慢减小然后快速减小,而气泡终端速度近似呈线性减小.最后,数值结果还表明当气泡初始位置偏离管道中间时,其上升速度、气泡剩余质量以及气泡终端速度都与初始位置在管道中间时的变化趋势一致,然而对应的数值均减小,且气泡在上升过程中变形更严重.
    The movement of bubbles in the viscous fluid is a typical process in many industrial applications, such as in evaporators of refrigeration cycles, petroleum refining, boiling process, steam bubble rising in boiler tubes and heat exchangers, etc. It is an important research problem in engineering and physics. Although this kind of problem has been extensively studied, their flow details are largely unknown due to the complexity of the interface dynamics, which hinders the understanding of the physical mechanism. In order to further study underlying physics of the issue, a gas bubble rising under buoyancy in a complex micro-channel is investigated by using a gas-liquid two-phase flow lattice Boltzmann method. Initially, the model as well as a classical problem of bubble rising in a smooth vertical microchannel is tested by Laplace law. Then it is then applied to the study of a bubble rising in a complex micro-channel. Specially, the dynamic behaviors of the bubble deformation, breaking up, coalescence, and the following movement in the micro-channel are presented. The rising velocity, terminal velocity and residual mass of the bubble under the influence of micro-channel surface wettability, buoyancy force, obstacle size and the initial position of bubble are examined. The simulation results show that the surface wettability of the obstacle has a significant influence on the bubble motion. For smaller values of the contact angle, the whole bubble passes through the channel with obstacles successfully. For higher values of contact angle, the bubble is attracted to the obstacle surface of the micro-channel in the movement process. In this case, an appreciable deformation of the bubble is observed. After detachment, part of the bubble is attached by the obstacle surface, so only the rest of the bubble can go through the micro-channel, which leads the the bubble residual mass to decrease. Correspondingly, the rising velocity and terminal velocity of the bubble decrease with the wettability of the micro-channel obstacle increasing. On the other hand, with the increase of buoyancy force the detachment and coalescence phenomenon happen easily, and the bubble residual mass and terminal velocity increase logarithmically. Furthermore, as the radius of the obstacle structure increases, the bubble clings more tightly to the obstacle surface when it rises in the micro-channel. And the bubble residual mass decreases first slowly and then rapidly, while the bubble terminal velocity approximately decreases linearly. Finally, the numerical results also show that when the bubble is located at the sidewall initially, the variation trend of bubble rising velocity, terminal velocity and residual mass are consistent with that of initial position placed in the middle of the micro-channel, however all of the corresponding values decrease and the bubble deformation is more significant in the rising process.
    • 基金项目: 国家自然科学基金(批准号:51476102,51736007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51476102, 51736007).
    [1]

    Yang G Q, Du B, Fan L S 2007 Chem. Eng. Sci. 62 2

    [2]

    Li L, Li B 2016 JOM 68 2160

    [3]

    Cuesta P D L, Keijzers L, Wielen L A M V D, Cuellar M C 2018 Biotechnol. J. 13 1700478

    [4]

    Bhaga D, Weber M E 1981 J. Fluid Mech. 105 61

    [5]

    Weber M E, Bhaga D 1982 Chem. Eng. Sci. 37 113

    [6]

    Hua J, Lou J 2007 J. Comput. Phys. 222 769

    [7]

    Maxworthy T, Gnann C, Kürten M, Durst F 1996 J. Fluid Mech. 321 421

    [8]

    Rensen J, Roig V 2001 Int. J. Multiphase Flow. 27 1431

    [9]

    Takada N, Misawa M, Tomiyama A, Hosokawa S 2001 J. Nucl. Sci. Technol. 38 330

    [10]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

    [11]

    Baltussen M W, Kuipers J A M, Deen N G 2014 Chem. Eng. Sci. 109 65

    [12]

    Fakhari A, Rahimian M H 2009 Int. J. Mod. Phys. B 23 4907

    [13]

    Uchiyama T, Ishiguro Y 2016 Adv. Chem. Eng. Sci. 6 269

    [14]

    Salcedo E, Treviño C, Palacios-Morales C, Zenit R, Martínez-Suástegui L 2017 Int. J. Therm. Sci. 115 176

    [15]

    Li W Z, Dong B, Feng Y J, Sun T 2014 Numer. Heat Transfer, Part B 65 174

    [16]

    Alizadeh M, Seyyedi S M, Rahni M T, Ganji D D 2017 J. Mol. Liq. 236 151

    [17]

    Yi J, Xing H 2017 Chem. Eng. Sci. 161 57

    [18]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [19]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [20]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [21]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [22]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [23]

    He X Y, Luo L S 1997 Phys. Rev. E 55 6333

    [24]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811

    [25]

    He X Y, Chen S, Zhang R Y 1999 J. Comput. Phys. 152 642

    [26]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [27]

    Evans R 1979 Adv. Phys. 28 143

    [28]

    Guo Z, Zheng C, Shi B 2011 Phys. Rev. E 83 036707

    [29]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid D 20 415

    [30]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [31]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

  • [1]

    Yang G Q, Du B, Fan L S 2007 Chem. Eng. Sci. 62 2

    [2]

    Li L, Li B 2016 JOM 68 2160

    [3]

    Cuesta P D L, Keijzers L, Wielen L A M V D, Cuellar M C 2018 Biotechnol. J. 13 1700478

    [4]

    Bhaga D, Weber M E 1981 J. Fluid Mech. 105 61

    [5]

    Weber M E, Bhaga D 1982 Chem. Eng. Sci. 37 113

    [6]

    Hua J, Lou J 2007 J. Comput. Phys. 222 769

    [7]

    Maxworthy T, Gnann C, Kürten M, Durst F 1996 J. Fluid Mech. 321 421

    [8]

    Rensen J, Roig V 2001 Int. J. Multiphase Flow. 27 1431

    [9]

    Takada N, Misawa M, Tomiyama A, Hosokawa S 2001 J. Nucl. Sci. Technol. 38 330

    [10]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

    [11]

    Baltussen M W, Kuipers J A M, Deen N G 2014 Chem. Eng. Sci. 109 65

    [12]

    Fakhari A, Rahimian M H 2009 Int. J. Mod. Phys. B 23 4907

    [13]

    Uchiyama T, Ishiguro Y 2016 Adv. Chem. Eng. Sci. 6 269

    [14]

    Salcedo E, Treviño C, Palacios-Morales C, Zenit R, Martínez-Suástegui L 2017 Int. J. Therm. Sci. 115 176

    [15]

    Li W Z, Dong B, Feng Y J, Sun T 2014 Numer. Heat Transfer, Part B 65 174

    [16]

    Alizadeh M, Seyyedi S M, Rahni M T, Ganji D D 2017 J. Mol. Liq. 236 151

    [17]

    Yi J, Xing H 2017 Chem. Eng. Sci. 161 57

    [18]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [19]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [20]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [21]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [22]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [23]

    He X Y, Luo L S 1997 Phys. Rev. E 55 6333

    [24]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811

    [25]

    He X Y, Chen S, Zhang R Y 1999 J. Comput. Phys. 152 642

    [26]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [27]

    Evans R 1979 Adv. Phys. 28 143

    [28]

    Guo Z, Zheng C, Shi B 2011 Phys. Rev. E 83 036707

    [29]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid D 20 415

    [30]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [31]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

  • [1] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究. 物理学报, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [3] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能. 物理学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [4] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [5] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [6] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [7] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究. 物理学报, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [8] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [9] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析. 物理学报, 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [12] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [13] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [14] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [15] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究. 物理学报, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [16] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [17] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [18] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [19] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征. 物理学报, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [20] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
计量
  • 文章访问数:  7444
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2018-09-02
  • 刊出日期:  2018-12-05

/

返回文章
返回