搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型机械解理方法在二维材料研究中的应用

许宏 孟蕾 李杨 杨天中 鲍丽宏 刘国东 赵林 刘天生 邢杰 高鸿钧 周兴江 黄元

引用本文:
Citation:

新型机械解理方法在二维材料研究中的应用

许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元

Applications of new exfoliation technique in study of two-dimensional materials

Xu Hong1\2, Meng Lei1\3, Li Yang1\4, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan
PDF
导出引用
  • 自从石墨烯被发现以来,机械解理技术已经成为制备高质量二维材料的重要方法之一,在二维材料本征物性的研究方面展现出了独特的优势.然而传统机械解理方法存在明显的不足,如制备效率低、样品尺寸小等,阻碍了二维材料领域的研究进展.近些年我们在机械解理技术方面取得了一系列的突破,独立发展了一套具有普适性的新型机械解理方法.这种新型机械解理方法的核心在于通过改变解理过程中的多个参数,增强层状材料与基底之间的范德瓦耳斯相互作用,从而提高单层样品的产率和面积.本文着重以石墨烯为例,介绍了该技术的过程和机理.相比于传统机械解理方法,石墨烯的尺寸从微米量级提高到毫米量级,面积提高了十万倍以上,产率大于95%,同时石墨烯依然保持着非常高的质量.这种新型机械解理方法具有良好的普适性,目前已经在包括MoS2,WSe2,MoTe2,Bi2212等几十种材料体系中得到了毫米量级以上的高质量单层样品.更重要的是,在解理过程中,通过调控不同的参数,可以在层状材料中实现一些特殊结构的制备,如气泡、褶皱结构等,为研究这些特殊材料体系提供了重要的物质保障.未来机械解理技术还有很多值得深入研究的科学问题,该技术的突破将会极大地推动二维材料领域的研究进展.
    Since the discovery of graphene, mechanical exfoliation technology has become one of the important methods of preparing high-quality two-dimensional (2D) materials. This technology shows some unique advantages in the study of the intrinsic properties of 2D materials. However, traditional mechanical exfoliation method also has some obvious deficiencies, such as low yield ratio and small size of the resulting single-or few-layer flakes, which hinders the research progress in the field of 2D materials. In recent years, we made a series of breakthroughs in mechanical exfoliation technology, and independently developed a new type of mechanical exfoliation method with universality. The core of this new method is to enhance the van der Waals interaction between the layered material and the substrate by changing multiple parameters in the exfoliation process, thereby increasing the yield ratio and area of the monolayer. Taking graphene for example, we can now increase the size of graphene from micron to millimeter, increase over 100000 times in area, and yield ratio more than 95%, in the meantime graphene still maintains very high quality. This new mechanical exfoliation method shows great universality, and high-quality monolayer flake with a size of millimeters or more has been obtained in dozens of layered material systems including MoS2, WSe2, MoTe2, and Bi2212. More importantly, some special structures can be fabricated by optimizing exfoliation parameters, such as bubble and wrinkle structures, which paves the way for the study of these special material systems. Many scientific problems are still worth exploring in the mechanical exfoliation technology, and the breakthrough of this technology will greatly promote the research progress in the field of 2D materials.
      通信作者: 周兴江, xjzhou@iphy.ac.cn;yhuang876@gmail.com ; 黄元, xjzhou@iphy.ac.cn;yhuang876@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11874405,61474141,11504439,11104255)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Zhou Xing-Jiang, xjzhou@iphy.ac.cn;yhuang876@gmail.com ; Huang Yuan, xjzhou@iphy.ac.cn;yhuang876@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874405, 61474141, 11504439, 11104255) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Zhang H 2015 ACS Nano 9 9451

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [8]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [10]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [11]

    Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68

    [12]

    Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705

    [13]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135

    [14]

    Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403

    [15]

    Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389

    [17]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927

    [18]

    Arthur J R 2002 Surf. Sci. 500 189

    [19]

    Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157

    [20]

    Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907

    [21]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507

    [22]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [23]

    Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 物理学报 66 216802]

    [24]

    Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114

    [25]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410

    [26]

    Dines M B 1975 Mater. Res. Bull. 10 287

    [27]

    Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457

    [28]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124

    [29]

    Ma R, Sasaki T 2010 Adv. Mater. 22 5082

    [30]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992

    [31]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420

    [32]

    Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272

    [33]

    Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624

    [34]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [35]

    Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95

    [36]

    Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718

    [37]

    Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700

    [38]

    Geim A K 2009 Science 324 1530

    [39]

    Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743

    [40]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612

    [41]

    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330

    [42]

    Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104

    [43]

    Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198

    [44]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197

    [45]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [46]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [47]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [48]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [49]

    Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401

    [50]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [51]

    Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103

    [52]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Zhang H 2015 ACS Nano 9 9451

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [8]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [10]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [11]

    Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68

    [12]

    Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705

    [13]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135

    [14]

    Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403

    [15]

    Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389

    [17]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927

    [18]

    Arthur J R 2002 Surf. Sci. 500 189

    [19]

    Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157

    [20]

    Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907

    [21]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507

    [22]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [23]

    Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 物理学报 66 216802]

    [24]

    Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114

    [25]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410

    [26]

    Dines M B 1975 Mater. Res. Bull. 10 287

    [27]

    Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457

    [28]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124

    [29]

    Ma R, Sasaki T 2010 Adv. Mater. 22 5082

    [30]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992

    [31]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420

    [32]

    Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272

    [33]

    Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624

    [34]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [35]

    Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95

    [36]

    Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718

    [37]

    Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700

    [38]

    Geim A K 2009 Science 324 1530

    [39]

    Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743

    [40]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612

    [41]

    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330

    [42]

    Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104

    [43]

    Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198

    [44]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197

    [45]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [46]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [47]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [48]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [49]

    Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401

    [50]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [51]

    Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103

    [52]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用. 物理学报, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [5] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [6] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [7] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射. 物理学报, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [8] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [9] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [10] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211815
    [11] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [12] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [13] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [14] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [17] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [18] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [19] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [20] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
计量
  • 文章访问数:  10811
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-01
  • 修回日期:  2018-09-23
  • 刊出日期:  2018-11-05

/

返回文章
返回