搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一款基于多物理场调控的超宽带线-圆极化转换器

曾立 刘国标 章海锋 黄通

引用本文:
Citation:

一款基于多物理场调控的超宽带线-圆极化转换器

曾立, 刘国标, 章海锋, 黄通

An ultrawideband linear-to-circular polarization converter based on multiphysics regulation

Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong
PDF
HTML
导出引用
  • 为了在微波波段实现可调谐的线-圆极化转换器的设计, 结合固态等离子体与二氧化钒设计了一种基于多物理场调控的超宽带线-圆极化转换器, 通过改变固态等离子体谐振单元激励状态和人为改变外部温度(T )来实现对该线-圆极化转换器工作频段的调控. 采用了全波仿真的方法对该极化转换器的极化转换率曲线、反射相位曲线、轴比曲线、表面电流图进行了计算, 并讨论了参数r1r3对轴比的影响. 仿真结果表明, 当固态等离子体区域均未激励且T < 68 ℃时, 3 dB轴比频带为14.3—29.7 GHz, 相对带宽为70%; 当固态等离子体区域均被激励且T < 68 ℃时, 3 dB轴比频带为14.4—23.4 GHz与28.6—35.9 GHz, 相对带宽分别为47.61%和22.64%; 当固态等离子体区域未激励且T ≥ 68 ℃时, 3 dB轴比频带为8.4—11.2 GHz与18.7—29.5 GHz, 相对带宽分别为28.57%与44.81%. 通过改变固态等离子体的激励状态和外部温度, 实现了该超宽带线-圆极化转换器工作带宽向高频和低频区域的移动.
    In order to design a tunable linear-to-circular polarization converter in microwave band, an ultra-broadband linear-to-circular polarization converter (LCPC) based on multiphysics regulation is proposed and studied by combining solid state plasma and vanadium dioxide (VO2) in this article. By using the electric control way to control the states of the solid plasma resonator, the solid state plasma can generate excitation and non-excitation state. By using the temperature (T) control way to regulate the phase transition state of the VO2 resonator, the VO2 can generate insulating and metallic state. The purpose of dynamic shift of the proposed LCPC′s operating band can be realized. The polarization conversion rate curve, reflection phase curve, the axial ratio curve and the surface current diagram of the proposed LCPC are analyzed and simulated by the full-wave simulation software HFSS and the effects of parameters r1 and r3 on the axial ratio are also discussed. When none of all the solid plasma regions are excited and T < 68 ℃ , the presented LCPC is in No. 1 state. On the basis of No. 1 state, if all the solid state plasma are excited, the presented LCPC is in No. 2 state. Similarly, on the basis of No. 1 state, the presented LCPC will be transformed to No. 3 state when T ≥ 68 ℃. The axial ratio band which is less than 3 dB (3 dB AR band) is 14.3−29.7 GHz (the relative bandwidth is 70%) in No. 2 state. The 3 dB AR bands which are 14.4−23.4 GHz and 28.6−35.9 GHz (the relative bandwidths are 47.61% and 22.64%) show that the proposed LCPC has the ability to shift the working band to high frequency range. When switching the LCPC to No. 3 state, the 3 dB AR bands which are 8.4−11.2 GHz and 18.7−29.5 GHz (the relative bandwidths are 28.57% and 44.81%) are shifted to low frequency region. Compared with traditional LCPC, our design has the advantages of diverse control means, wide bandwidth, flexible design and strong functionality. At the same time, this LCPC presents a new design method and idea for multiphysical field regulated devices.
      通信作者: 章海锋, hanlor@163.com
    • 基金项目: 东南大学毫米波国家重点实验室开放课题(批准号: K201927)和校级大学生创新训练计划资助的课题.
      Corresponding author: Zhang Hai-Feng, hanlor@163.com
    • Funds: Project supported by the Open Research Program of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K201927) and the University-Level University Students' Innovative Training Programs.
    [1]

    Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar

    [2]

    Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar

    [3]

    杨化 2015 硕士学位论文 (南京: 南京航空航天大学)

    Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [5]

    Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206

    [6]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar

    [7]

    Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar

    [8]

    Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1

    [9]

    余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页

    Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)

    [10]

    Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar

    [11]

    Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar

    [12]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [13]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar

    [14]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [15]

    Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar

    [16]

    Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9

    [17]

    Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528

    [18]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [19]

    Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [20]

    余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)

    Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [21]

    杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602

    Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602

    [22]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [23]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar

    [24]

    Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar

    [25]

    施维 2017 硕士学位论文 (南京: 南京航空航天大学)

    Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [26]

    于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar

    Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.) 19 60Google Scholar

  • 图 1  线-圆极化转换器结构单元示意图 (a)正视图; (b)侧视图; (c)立体图

    Fig. 1.  Structure schematic of the unit cell for linear-to-circular polarization converter: (a) Front view; (b) side view; (c) stereogram.

    图 2  线-圆极化转换器在三种工作状态下的极化转换率和反射相位差曲线 (a)工作状态一; (b)工作状态二; (c)工作状态三

    Fig. 2.  Polarization conversion rate curves and reflection phase difference curves of linear-to-circular polarization converter in three states: (a) No.1 state; (b) No.2 state; (c) No.3 state.

    图 3  线-圆极化转换器在电控和温控时的轴比曲线 (a)电控时, 工作状态一、二的轴比曲线; (b) 温控时, 工作状态一、三的轴比曲线

    Fig. 3.  Axial ratio curves of linear-to-circular polarization converter when using electric control and temperature control: (a) Axial ratio curves in No. 1 state and in No. 2 state when using electric control; (b) axial ratio curves in No. 1 state and in No. 3 state when using temperature control.

    图 4  线-圆极化转换器在三种工作状态下, 顶层谐振单元与底层反射板在不同频点处的表面电流图 (a)工作状态一时, 15.03 GHz频点处; (b)工作状态一时, 21.3 GHz频点处; (c)工作状态二时, 32.5 GHz频点处; (d)工作状态三时, 10 GHz频点处

    Fig. 4.  Surface current diagrams of the top resonant unit and the bottom reflector at different frequency points in three states, respectively: (a) No.1 state at 15.03 GHz; (b) No.1 state at 21.3 GHz; (c) No.2 state at 32.5 GHz; (d) No.3 state at 10 GHz.

    图 5  当其他参数不变, 结构参数r1r3在不同取值时的轴比曲线 (a) r1 = 0.71, 0.81, 0.91 mm; (b) r3 = 1.82, 1.87, 1.92 mm

    Fig. 5.  Axial ratio curves for parameters r1 and r3 at different values when other parameters remain unchanged: (a) r1 = 0.71, 0.81, 0.91 mm; (b) r3 = 1.82, 1.87, 1.92 mm.

    表 1  线-圆极化转换器的参数

    Table 1.  Parameters of linear-to-circular polarization converter.

    参数/mm数值参数/mm数值
    a0.2417h11.5
    b0.48h20.5
    c0.47p4.8
    d0.35r10.81
    e0.68r21.1583
    f1.2r31.87
    g0.8w0.018
    下载: 导出CSV
  • [1]

    Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar

    [2]

    Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar

    [3]

    杨化 2015 硕士学位论文 (南京: 南京航空航天大学)

    Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [5]

    Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206

    [6]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar

    [7]

    Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar

    [8]

    Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1

    [9]

    余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页

    Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)

    [10]

    Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar

    [11]

    Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar

    [12]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [13]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar

    [14]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [15]

    Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar

    [16]

    Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9

    [17]

    Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528

    [18]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [19]

    Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [20]

    余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)

    Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [21]

    杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602

    Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602

    [22]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [23]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar

    [24]

    Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar

    [25]

    施维 2017 硕士学位论文 (南京: 南京航空航天大学)

    Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [26]

    于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar

    Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.) 19 60Google Scholar

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [4] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源. 物理学报, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [5] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [6] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [8] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [9] 郭蓉, 曹祥玉, 袁子东, 徐雪飞. 一种新型宽带定向性贴片天线设计. 物理学报, 2014, 63(24): 244102. doi: 10.7498/aps.63.244102
    [10] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [11] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究. 物理学报, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [12] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [13] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [14] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [15] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换. 物理学报, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [16] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [17] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [18] 王 健, 孙军强, 郭永娟, 李 婧, 孙琪真. 新型双环腔结构可调谐全光波长转换器的实验研究. 物理学报, 2007, 56(6): 3251-3254. doi: 10.7498/aps.56.3251
    [19] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [20] 徐 帆, 张新亮, 黄德修. 新型结构可调谐全光波长转换器的理论与实验研究. 物理学报, 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
计量
  • 文章访问数:  9011
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-11-28
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回