-
为了在微波波段实现可调谐的线-圆极化转换器的设计, 结合固态等离子体与二氧化钒设计了一种基于多物理场调控的超宽带线-圆极化转换器, 通过改变固态等离子体谐振单元激励状态和人为改变外部温度(T )来实现对该线-圆极化转换器工作频段的调控. 采用了全波仿真的方法对该极化转换器的极化转换率曲线、反射相位曲线、轴比曲线、表面电流图进行了计算, 并讨论了参数r1与r3对轴比的影响. 仿真结果表明, 当固态等离子体区域均未激励且T < 68 ℃时, 3 dB轴比频带为14.3—29.7 GHz, 相对带宽为70%; 当固态等离子体区域均被激励且T < 68 ℃时, 3 dB轴比频带为14.4—23.4 GHz与28.6—35.9 GHz, 相对带宽分别为47.61%和22.64%; 当固态等离子体区域未激励且T ≥ 68 ℃时, 3 dB轴比频带为8.4—11.2 GHz与18.7—29.5 GHz, 相对带宽分别为28.57%与44.81%. 通过改变固态等离子体的激励状态和外部温度, 实现了该超宽带线-圆极化转换器工作带宽向高频和低频区域的移动.In order to design a tunable linear-to-circular polarization converter in microwave band, an ultra-broadband linear-to-circular polarization converter (LCPC) based on multiphysics regulation is proposed and studied by combining solid state plasma and vanadium dioxide (VO2) in this article. By using the electric control way to control the states of the solid plasma resonator, the solid state plasma can generate excitation and non-excitation state. By using the temperature (T) control way to regulate the phase transition state of the VO2 resonator, the VO2 can generate insulating and metallic state. The purpose of dynamic shift of the proposed LCPC′s operating band can be realized. The polarization conversion rate curve, reflection phase curve, the axial ratio curve and the surface current diagram of the proposed LCPC are analyzed and simulated by the full-wave simulation software HFSS and the effects of parameters r1 and r3 on the axial ratio are also discussed. When none of all the solid plasma regions are excited and T < 68 ℃ , the presented LCPC is in No. 1 state. On the basis of No. 1 state, if all the solid state plasma are excited, the presented LCPC is in No. 2 state. Similarly, on the basis of No. 1 state, the presented LCPC will be transformed to No. 3 state when T ≥ 68 ℃. The axial ratio band which is less than 3 dB (3 dB AR band) is 14.3−29.7 GHz (the relative bandwidth is 70%) in No. 2 state. The 3 dB AR bands which are 14.4−23.4 GHz and 28.6−35.9 GHz (the relative bandwidths are 47.61% and 22.64%) show that the proposed LCPC has the ability to shift the working band to high frequency range. When switching the LCPC to No. 3 state, the 3 dB AR bands which are 8.4−11.2 GHz and 18.7−29.5 GHz (the relative bandwidths are 28.57% and 44.81%) are shifted to low frequency region. Compared with traditional LCPC, our design has the advantages of diverse control means, wide bandwidth, flexible design and strong functionality. At the same time, this LCPC presents a new design method and idea for multiphysical field regulated devices.
[1] Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar
[2] Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar
[3] 杨化 2015 硕士学位论文 (南京: 南京航空航天大学)
Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[4] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar
[5] Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206
[6] Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar
[7] Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar
[8] Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1
[9] 余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页
Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)
[10] Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar
[11] Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar
[12] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar
[13] Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar
[14] Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar
[15] Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar
[16] Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9
[17] Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528
[18] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar
[19] Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar
[20] 余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)
Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[21] 杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602
Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602
[22] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar
[23] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar
[24] Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar
[25] 施维 2017 硕士学位论文 (南京: 南京航空航天大学)
Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[26] 于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar
Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.)
19 60Google Scholar -
图 3 线-圆极化转换器在电控和温控时的轴比曲线 (a)电控时, 工作状态一、二的轴比曲线; (b) 温控时, 工作状态一、三的轴比曲线
Fig. 3. Axial ratio curves of linear-to-circular polarization converter when using electric control and temperature control: (a) Axial ratio curves in No. 1 state and in No. 2 state when using electric control; (b) axial ratio curves in No. 1 state and in No. 3 state when using temperature control.
图 4 线-圆极化转换器在三种工作状态下, 顶层谐振单元与底层反射板在不同频点处的表面电流图 (a)工作状态一时, 15.03 GHz频点处; (b)工作状态一时, 21.3 GHz频点处; (c)工作状态二时, 32.5 GHz频点处; (d)工作状态三时, 10 GHz频点处
Fig. 4. Surface current diagrams of the top resonant unit and the bottom reflector at different frequency points in three states, respectively: (a) No.1 state at 15.03 GHz; (b) No.1 state at 21.3 GHz; (c) No.2 state at 32.5 GHz; (d) No.3 state at 10 GHz.
表 1 线-圆极化转换器的参数
Table 1. Parameters of linear-to-circular polarization converter.
参数/mm 数值 参数/mm 数值 a 0.2417 h1 1.5 b 0.48 h2 0.5 c 0.47 p 4.8 d 0.35 r1 0.81 e 0.68 r2 1.1583 f 1.2 r3 1.87 g 0.8 w 0.018 -
[1] Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar
[2] Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar
[3] 杨化 2015 硕士学位论文 (南京: 南京航空航天大学)
Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[4] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar
[5] Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206
[6] Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar
[7] Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar
[8] Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1
[9] 余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页
Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)
[10] Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar
[11] Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar
[12] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar
[13] Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar
[14] Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar
[15] Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar
[16] Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9
[17] Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528
[18] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar
[19] Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar
[20] 余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)
Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[21] 杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602
Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602
[22] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar
[23] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar
[24] Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar
[25] 施维 2017 硕士学位论文 (南京: 南京航空航天大学)
Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[26] 于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar
Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.)
19 60Google Scholar
计量
- 文章访问数: 9011
- PDF下载量: 98
- 被引次数: 0