搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤1/f 热噪声的实验研究

黄军超 汪凌珂 段怡菲 黄亚峰 刘亮 李唐

引用本文:
Citation:

光纤1/f 热噪声的实验研究

黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐

Experimental study on 1/f intrinsic thermal noise in optical fibers

Huang Jun-Chao, Wang Ling-Ke, Duan Yi-Fei, Huang Ya-Feng, Liu Liang, Li Tang
PDF
HTML
导出引用
  • 光纤热噪声是限制光纤传感、测量系统性能的最终因素. 但是低频区域呈1/f谱特性的光纤热噪声的形成机制迄今仍然存在争论. 实验研究了光纤1/f热噪声水平与光纤内杂质离子浓度和光纤施加张力的关系, 验证了这类热噪声来源于光纤内部的机械耗散引起的长度自发抖动, 符合热机械噪声的理论假设.
    Intrinsic thermal noise in optical fibers is an ultimate factor limiting the performances of fiber-based sensors and measurement systems. Therefore, it is important to have a thorough understanding of this kind of noise. However, the mechanism of the intrinsic thermal noise which has a 1/f spectral density remains unclear so far. There are two theoretical models to explain the mechanism of this kind of noise: thermoconductive noise model and thermomechanical noise model. The thermoconductive noise model states that the noise is caused by diffusion of local entropy fluctuations associated with random spontaneous emission events, while the thermomechanical noise model says that the noise is caused by spontaneous fluctuations of fiber length induced by mechanical dissipation. Which theoretical model is correct is still an open question. In this paper, we experimentally investigate the intrinsic thermal noise in optical fibers by using a balanced fiber Michelson interferometer with heterodyne detection technique. When a fiber-stabilized laser with ultralow frequency noise is used as a laser source and other noise sources are carefully controlled, the 1/f spectral intrinsic thermal noise can be observed down to infrasonic frequency. According to these measurements, in order to verify which theoretical model is the mechanism of generating the intrinsic thermal noise with 1/f spectral density, we study the relationship between the level of the intrinsic thermal noise and the concentration of the dopant in fibers and the applied tension of fibers. We observe that the level of the 1/f spectral intrinsic thermal noise is independent of the concentration of the dopant in fibers. This means that the thermoconductive noise model is not suitable to this case. We also observe that the level of the 1/f spectral intrinsic thermal noise can be reduced by increasing the tension exerted on the optical fibers. Because the mechanical loss of a fiber can be lower than the loss of the material which the fiber is made of when the fiber is subjected to a certain tension, this observation proves the fact that the 1/f spectral intrinsic thermal noise in optical fibers originates from the mechanical dissipation process inside optical fibers. This is consistent with the predictions of the thermomechanical noise model. Finally, the inconsistency between the experimental data and the theoretical results for thermomechanical noise is discussed.
      通信作者: 李唐, litang@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11604353, 11704391)和中国科学院重点部署项目(批准号: KJZD-EW-W02)资助的课题.
      Corresponding author: Li Tang, litang@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604353, 11704391) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
    [1]

    Giallorenzi T G, Bucaro J A, Dandridge A, Sigel G H, Rashleigh S C, Priest R G 1985 IEEE Trans. Microwave Theory Tech. 30 472

    [2]

    Murphy K A, Gunther M F, Vengsarkar A M, Claus R O 1991 Opt. Lett. 16 273Google Scholar

    [3]

    Yuan LB, Zhou L M, Jin W 2000 IEEE Trans. Instrum. Meas. 49 779Google Scholar

    [4]

    Lee B 2003 Opt. Fiber Technol. 9 57Google Scholar

    [5]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [6]

    Dong J, Hu Y Q, Huang J C, Ye M F, Qu Q Z, Li T, Liu L 2015 Appl. Opt. 54 1152Google Scholar

    [7]

    Glenn W H 1989 IEEE J. Quantum Electron. 25 1218Google Scholar

    [8]

    Wanser K H 1992 Electron. Lett. 28 53Google Scholar

    [9]

    Foster S, Tikhomirov A, Milnes M 2007 IEEE J. Quantum Electron. 43 378Google Scholar

    [10]

    Kersey A D 1996 Opt. Fiber Technol. 2 291Google Scholar

    [11]

    Foster S, Cranch G A, Tikhomirov A 2009 Phys. Rev. A 79 053802Google Scholar

    [12]

    Bartolo R E, Tveten A B, Dandrige A 2012 IEEE J. Quantum Electron. 48 720Google Scholar

    [13]

    Dong J, Huang J C, Li T, Liu L 2016 Appl. Phys. Lett. 108 021108Google Scholar

    [14]

    Foster S 2008 Phys. Rev. A 78 013820Google Scholar

    [15]

    Duan L Z 2010 Electron. Lett. 46 1515Google Scholar

    [16]

    Duan L Z 2012 Phys. Rev. A 86 023817Google Scholar

    [17]

    White G K 1973 J. Phys. D: Appl. Phys. 6 2070Google Scholar

    [18]

    Reid M B, Ozcan M 1998 Opt. Eng. 37 237Google Scholar

    [19]

    Kuwazuru M, Namihira Y, Mochizuki K, Iwamoto Y 1988 J. Lightwave Technol. 6 18

    [20]

    Tanaka S, Kyoto M, Watanabe M, Yokota H 1984 Electron. Lett. 20 283Google Scholar

    [21]

    Plotnichenko V G, Ivanov G A, Kryuakova E B, Aksenov V A , Sokolov V O, Isaev V A 2005 J. Lightwave Technol. 23 341Google Scholar

    [22]

    赵勇, 孟庆尧 2007 光电工程 34 9Google Scholar

    Zhao Y, Meng Q Y 2007 Opto-Electron Eng. 34 9Google Scholar

    [23]

    Bell C J 2014 Ph.D. Dissertation (Glasgow: University of Glasgow)

    [24]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

  • 图 1  测量光纤热噪声的实验装置(OFI, 光纤隔离器; OFC, 光纤耦合器; FM, 法拉第反射镜; PD, 光电管; FFT, 快速傅里叶变换分析仪; AOM, 声光调制器)

    Fig. 1.  Experimental setup for measuring intrinsic thermal noise in optical fibers (OFI, optical fiber isolator; OFC, optical fiber coupler; FM, Faraday mirror; PD, photodiode; FFT, fast Fourier transform; AOM, acousto-optical modulator).

    图 2  测量系统的噪声来源

    Fig. 2.  Contributing noise sources of the measurement system.

    图 3  SMF-28光纤与纯硅芯光纤热噪声测量结果

    Fig. 3.  Measured intrinsic thermal noise in SMF-28 fibers and pure SiO2 fibers.

    图 4  不同反应时间下的光纤本征热噪声测量结果

    Fig. 4.  Measured intrinsic thermal noise in optical fibers with different Hydrogen treatment.

    图 5  无张力与受张力0.1 N状态下的光纤本征热噪声测量结果

    Fig. 5.  Measured thermal noise in free fibers and fibers under 0.1 N tension.

    图 6  不同张力情况下SMF-28光纤本征热噪声测量结果

    Fig. 6.  Measured thermal noise in fibers under different tensions.

  • [1]

    Giallorenzi T G, Bucaro J A, Dandridge A, Sigel G H, Rashleigh S C, Priest R G 1985 IEEE Trans. Microwave Theory Tech. 30 472

    [2]

    Murphy K A, Gunther M F, Vengsarkar A M, Claus R O 1991 Opt. Lett. 16 273Google Scholar

    [3]

    Yuan LB, Zhou L M, Jin W 2000 IEEE Trans. Instrum. Meas. 49 779Google Scholar

    [4]

    Lee B 2003 Opt. Fiber Technol. 9 57Google Scholar

    [5]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [6]

    Dong J, Hu Y Q, Huang J C, Ye M F, Qu Q Z, Li T, Liu L 2015 Appl. Opt. 54 1152Google Scholar

    [7]

    Glenn W H 1989 IEEE J. Quantum Electron. 25 1218Google Scholar

    [8]

    Wanser K H 1992 Electron. Lett. 28 53Google Scholar

    [9]

    Foster S, Tikhomirov A, Milnes M 2007 IEEE J. Quantum Electron. 43 378Google Scholar

    [10]

    Kersey A D 1996 Opt. Fiber Technol. 2 291Google Scholar

    [11]

    Foster S, Cranch G A, Tikhomirov A 2009 Phys. Rev. A 79 053802Google Scholar

    [12]

    Bartolo R E, Tveten A B, Dandrige A 2012 IEEE J. Quantum Electron. 48 720Google Scholar

    [13]

    Dong J, Huang J C, Li T, Liu L 2016 Appl. Phys. Lett. 108 021108Google Scholar

    [14]

    Foster S 2008 Phys. Rev. A 78 013820Google Scholar

    [15]

    Duan L Z 2010 Electron. Lett. 46 1515Google Scholar

    [16]

    Duan L Z 2012 Phys. Rev. A 86 023817Google Scholar

    [17]

    White G K 1973 J. Phys. D: Appl. Phys. 6 2070Google Scholar

    [18]

    Reid M B, Ozcan M 1998 Opt. Eng. 37 237Google Scholar

    [19]

    Kuwazuru M, Namihira Y, Mochizuki K, Iwamoto Y 1988 J. Lightwave Technol. 6 18

    [20]

    Tanaka S, Kyoto M, Watanabe M, Yokota H 1984 Electron. Lett. 20 283Google Scholar

    [21]

    Plotnichenko V G, Ivanov G A, Kryuakova E B, Aksenov V A , Sokolov V O, Isaev V A 2005 J. Lightwave Technol. 23 341Google Scholar

    [22]

    赵勇, 孟庆尧 2007 光电工程 34 9Google Scholar

    Zhao Y, Meng Q Y 2007 Opto-Electron Eng. 34 9Google Scholar

    [23]

    Bell C J 2014 Ph.D. Dissertation (Glasgow: University of Glasgow)

    [24]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

计量
  • 文章访问数:  7628
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-11
  • 修回日期:  2018-11-11
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回