-
采用
$4.6\;{\text{μ}}{\rm{m}}$ 附近的量子级联激光器作为光源, 搭建了一套二硫化碳(CS2)吸收光谱测量系统, 结合可调谐二极管激光吸收光谱技术, 对光谱范围为2178.99—2180.79 cm–1的CS2吸收光谱展开了深入研究, 重点测量了2180.5—2180.74 cm–1的四条吸收谱线, 利用基于非线性最小二乘的多元线性回归算法对CS2吸收光谱进行拟合, 精确得到了该范围内谱线的中心波长、线强以及空气展宽系数等光谱参数. 经计算, 对应谱线线强不确定度小于5%, 空气展宽系数不确定度小于15%, 这个结果可作为免标定CS2红外光谱探测的基础光谱参数, 对痕量CS2气体传感具有重要意义. 未来我们将进一步开展2170—2200 cm–1整个谱段的CS2谱线参数的测量, 以期填补其在HITRAN和GEISA 数据库光谱参数的空白.-
关键词:
- 二硫化碳(CS2) /
- 量子级联激光器 /
- 可调谐二极管激光吸收光谱 /
- 光谱参数
Carbon disulfide (CS2) is a toxic volatile sulfur compound with flammability and harmfulness, which can seriously harm the human health and threaten the industrial production safety. Therefore, it is of high importance for monitoring CS2 concentration in the air. Tunable diode laser absorption spectroscopy is very suitable for the detection of trace gas for it possesses high sensitivity and fast response. And the precise knowledge of spectroscopic parameters is essential for deducing the CS2 concentration. However, primary database including HITRAN and GEISA lacks spectroscopic parameters of CS2. Thus, to address this issue, a measurement system of absorption spectrum is built for determining spectroscopic parameters by using a quantum cascade laser with narrow linewidth and high output power operating near 4.6 um as a light source. In this paper, direct absorption spectroscopy is used to measure the CS2 absorption spectra under different sample pressures and the environment temperature is controlled at 296 K, which is adjusted by an air conditioner. We intensively study the absorption spectra of CS2 in a range between 2178.99 and 2180.79 cm–1.According to the relevant reports and the need of actual measurement, four absorption lines are mainly measured in a range of 2180.5−2180.74 cm–1. Combining with the multiple linear regression algorithm based on the nonlinear least-square method and Beer-Lambert law, the integrated area and Lorentz line width of measured CS2 absorption spectrum can be determined. Then the spectroscopic parameters including absorption line intensity and air broadening coefficient are precisely obtained by linearly fitting the integrated areas and Lorentz line widths of CS2 absorption spectra at different pressures. Moreover, nitrous oxide (N2O) absorption spectrum with high spectral resolution is measured to calibrate the central position of carbon disulfide absorption line according to its known line position extracted from HITRAN database and the results obtained by etalon. The calculated results show that the uncertainty of line intensity and air broadening coefficient are less than 5% and 15%, respectively. It demonstrates that the measured spectroscopic parameters of four absorption lines for this study can be recorded in the database of HITRAN, which is very important for trace gas sensing of CS2. In the future, we will further improve the system for measuring CS2 absorption line parameters to fill in the gaps in their spectral parameters in HITRAN and GEISA databases.-
Keywords:
- carbon disulfide (CS2) /
- quantum cascade laser /
- tunable diode laser absorption spectroscopy /
- spectroscopic parameters
[1] Wang B, Sivret E C, Parcsi G, Stuetz R M 2015 Talanta 137 71Google Scholar
[2] Du Z, Li J, Cao X, Gao H, Ma Y 2017 Sensor. Actuat. B: Chem. 247 384Google Scholar
[3] Kilo S, Zonnur N, Uter W, Göen T, Drexler H 2015 Ann. Occup. Hyg. 59 972Google Scholar
[4] Wang L, Zhang Y, Zhou X, Zhang Z 2018 Appl. Opt. 57 21
[5] Kamboures M A, Blake D R, Cooper D M, Newcomb R L, Barker M, Larson J K, Rowland F S 2005 PANS 102 15762Google Scholar
[6] Rochette P, Jackson M, Aubourg C 1992 Rev. Geophys. 30 209Google Scholar
[7] 陈祥 2018 博士学位论文 (合肥: 中国科学技术大学)
Chen X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[8] Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar
[9] Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 347Google Scholar
[10] Buchholz B, Böse N, Ebert V 2014 Appl. Phys. B 116 883Google Scholar
[11] Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2012 Meas. Sci. Technol. 24 015202
[12] Sehnert S S, Jiang L, Burdick J F, Risby T H 2002 Biomarkers 7 174Google Scholar
[13] Blanquet G, Daoust L, Walrand J, Bredohl H, Dubois I, Fayt A 2006 J. Mol. Struc. 780 171
[14] Sirgy M J, Grzeskowiak S, Rahtz D 2007 Soc. Indic. Res. 80 343Google Scholar
[15] 魏敏 2017 博士学位论文(合肥: 中国科学技术大学)
Wei M 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[16] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar
[17] Chin M, Davis D D 1993 Global Biogeochem. Cy. 7 321Google Scholar
[18] Zumkehr A, Hilton T W, Whelan M, Smith S, Kuai L, Worden J, Campbell J E 2018 Atmos. Environ. 183 11Google Scholar
[19] Sharpe S W, Johnson T J, Sams R L, Chu P M, Rhoderick G C, Johnson P A 2004 Appl. Spectrosc. 58 1452Google Scholar
[20] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏辉辉, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar
Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar
[21] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏辉辉, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
-
表 1 计算得到线强值、不确定度以及空气展宽值和不确定度
Table 1. The calculated spectroscopic parameters including line-strengths, air broadening coefficients, and the corresponding uncertainty.
${\rm{\nu }_0}/{\rm{c}}{{\rm{m}}^{ - 1}}$ S(T0)/cm·molecule–1 Uncertainty/% Air broadening/cm–1·atm–1 Uncertainty/% 2180.54844 9.19 × 10–22 1.792 0.087 0.336 2180.55578 1.97 × 10–21 4.055 0.092 3.384 2180.65676 2.24 × 10–21 4.537 0.103 7.098 2180.69443 1.11 × 10–21 2.232 0.086 14.687 -
[1] Wang B, Sivret E C, Parcsi G, Stuetz R M 2015 Talanta 137 71Google Scholar
[2] Du Z, Li J, Cao X, Gao H, Ma Y 2017 Sensor. Actuat. B: Chem. 247 384Google Scholar
[3] Kilo S, Zonnur N, Uter W, Göen T, Drexler H 2015 Ann. Occup. Hyg. 59 972Google Scholar
[4] Wang L, Zhang Y, Zhou X, Zhang Z 2018 Appl. Opt. 57 21
[5] Kamboures M A, Blake D R, Cooper D M, Newcomb R L, Barker M, Larson J K, Rowland F S 2005 PANS 102 15762Google Scholar
[6] Rochette P, Jackson M, Aubourg C 1992 Rev. Geophys. 30 209Google Scholar
[7] 陈祥 2018 博士学位论文 (合肥: 中国科学技术大学)
Chen X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[8] Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar
[9] Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 347Google Scholar
[10] Buchholz B, Böse N, Ebert V 2014 Appl. Phys. B 116 883Google Scholar
[11] Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2012 Meas. Sci. Technol. 24 015202
[12] Sehnert S S, Jiang L, Burdick J F, Risby T H 2002 Biomarkers 7 174Google Scholar
[13] Blanquet G, Daoust L, Walrand J, Bredohl H, Dubois I, Fayt A 2006 J. Mol. Struc. 780 171
[14] Sirgy M J, Grzeskowiak S, Rahtz D 2007 Soc. Indic. Res. 80 343Google Scholar
[15] 魏敏 2017 博士学位论文(合肥: 中国科学技术大学)
Wei M 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[16] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar
[17] Chin M, Davis D D 1993 Global Biogeochem. Cy. 7 321Google Scholar
[18] Zumkehr A, Hilton T W, Whelan M, Smith S, Kuai L, Worden J, Campbell J E 2018 Atmos. Environ. 183 11Google Scholar
[19] Sharpe S W, Johnson T J, Sams R L, Chu P M, Rhoderick G C, Johnson P A 2004 Appl. Spectrosc. 58 1452Google Scholar
[20] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏辉辉, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar
Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar
[21] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏辉辉, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
计量
- 文章访问数: 10731
- PDF下载量: 111
- 被引次数: 0