搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响

刘保剑 段微波 李大琪 余德明 陈刚 王天洪 刘定权

引用本文:
Citation:

退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响

刘保剑, 段微波, 李大琪, 余德明, 陈刚, 王天洪, 刘定权

Effect of annealing temperature on structure and stress properties of Ta2O5/SiO2 multilayer reflective coatings

Liu Bao-Jian, Duan Wei-Bo, Li Da-Qi, Yu De-Ming, Chen Gang, Wang Tian-Hong, Liu Ding-Quan
PDF
HTML
导出引用
  • 介质膜反射镜是星载激光测高仪系统中不可缺少的薄膜元件, 其面形质量直接影响探测系统测距的分辨率和精度. 本文采用离子束辅助电子束蒸发工艺在石英基底上沉积Ta2O5/SiO2多层反射膜, 并在200—600 ℃的空气中做退火处理. 通过X射线衍射、原子力显微镜、分光光度计及激光干涉仪等测试手段, 系统研究了退火温度对Ta2O5/SiO2多层反射膜结构、光学性能以及应力特性的影响. 结果表明: Ta2O5/SiO2多层反射膜退火后, 膜层结构保持稳定, 膜层表面粗糙度得到有效改善; 反射膜在500—600 ℃退火后, 残余应力由压应力向张应力转变; 采用合适的退火温度可以有效释放Ta2O5/SiO2薄膜的残余应力, 使薄膜与基底构成的介质膜反射镜具有较好的面形精度. 本文的实验结果对退火工艺在介质膜反射镜面形控制技术方面的应用具有重要意义.
    In the optical system of spaceborne laser altimeter, dielectric mirror is an indispensable optical film element. Its surface shape quality directly affects the resolution and accuracy of distance measurement of the detection system. It is pressing and necessary to carry out research on the surface shape control technology of dielectric mirror to eliminate or reduce the effect of film stress on surface shape. The Ta2O5/SiO2 multilayer reflective coatings are deposited on quartz substrates by using the ion beam assisted electron beam evaporation (IBE), and then annealed in air in a temperature range from 200 to 600 ℃. The effect of annealing temperature on the structure, optical and stress properties of Ta2O5/SiO2 multilayer reflective coatings are systemically investigated by using x-ray diffraction, atomic force microscope, spectrophotometer and laser interferometer. The results show that all the Ta2O5/SiO2 multilayer reflective coatings, after being annealed, are amorphous in structure. The annealing temperature has a great influence on the surface roughness of reflective coating. With the increase of annealing temperature, the surface roughness of reflective coating first decreases and then gradually increases, but is still smaller than that of as-deposited sample. After being annealed, the reflectance spectrum of reflective coating shifts slightly toward the long-wave direction, and the reflectivity increases a little. When being annealed at 500-600 ℃, the compressive stress of reflective coating could be transformed into tensile stress, and the surface is changed from convex to concave shape. It can be concluded that annealing at an appropriate temperature can effectively release residual stress of Ta2O5/SiO2 multilayer reflective coating and eliminate the deformation of substrate caused by film stress, and thus improving the surface shape quality of dielectric mirror., After being annealed, the reflective coating still possesses the stable structure and spectral properties, so that dielectric mirror can meet the application requirements of spaceborne laser altimeter. In this paper, the experimental results are of great significance for applying the annealing technology to the surface shape control technology of dielectric mirrors.
      通信作者: 段微波, duanweibo@mail.sitp.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61605229)和中国科学院上海技术物理研究所创新专项基金(批准号: CX-129)资助的课题.
      Corresponding author: Duan Wei-Bo, duanweibo@mail.sitp.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605229) and the Innovation Program of Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Grant No. CX-129).
    [1]

    唐新明, 谢俊峰, 付兴科, 莫凡, 李少宁, 窦显辉 2017 测绘学报 46 714Google Scholar

    Tang X M, Xie J F, Fu X K, Mo F, Li S N, Dou X H 2017 Acta Geod. Cartogr. Sin. 46 714Google Scholar

    [2]

    刘斌, 张军, 鲁敏, 滕书华, 马燕新, 张文广 2015 激光与红外 54 5104

    Liu B, Zhang J, Lu M, Teng S H, Ma Y X, Zhang W G 2015 Laser Infr. 54 5104

    [3]

    刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214Google Scholar

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214Google Scholar

    [4]

    Schiltz D, Patel D, Baumgarten C, Reagan B A, Rocca J J, Menoni C S 2017 Appl. Opt. 5 6

    [5]

    Kumar S, Shankar A, Kishore N, Mukherjee C, Kamparath R, Thakur S 2019 Optik 176 438Google Scholar

    [6]

    Qiao Z, Pu Y T, Liu H, Luo K, Wang G, Liu Z C, Ma P 2015 Thin Solid Films 592 221Google Scholar

    [7]

    Ailloud Q, Zerrad M, Amra C 2018 Opt. Express 26 13264Google Scholar

    [8]

    马跃, 阳凡林, 易洪, 李松 2015 红外与激光工程 44 2401Google Scholar

    Ma Y, Yang F L, Yi H, Li S 2015 Infrar. Laser Eng. 44 2401Google Scholar

    [9]

    庞志海, 樊学武, 陈钦芳, 马臻, 邹刚毅 2013 光学学报 33 186

    Pang Z H, Fan X W, Chen Q F, Ma Z, Zou G Y 2013 Acta Opt. Sin. 33 186

    [10]

    Wang L S, Liu H S, Jiang Y G, Yang X, Liu D D, Ji Y Q, Zhang F, Chen D Y 2017 Optik 142 33Google Scholar

    [11]

    Sertel T, Sonmez N A, Cetin S S, Ozcelik S 2019 Ceram. Int. 45 11Google Scholar

    [12]

    Li S D, Liu H S, Jiang Y G, He J H, Wang L S, Ji Y Q 2019 Optik 181 695Google Scholar

    [13]

    Bischoff M, Nowitzki T, Voß O, Wilbrandt S, Stenzel O 2014 Appl. Opt. 5 3

    [14]

    Jena S, Tokas R B, Rao K D, Thakur S, Sahoo N K 2016 Appl. Opt. 55 6108Google Scholar

    [15]

    Çetinörgü-Goldenberg E, Klemberg-Sapieha J E, Martinu L 2012 Appl. Opt. 51 6498

    [16]

    季一勤, 姜玉刚, 刘华松, 王利栓, 刘丹丹, 姜承慧, 羊亚平, 樊荣伟, 陈德应 2013 红外与激光工程 42 418Google Scholar

    Ji Y Q, Jiang Y G, Liu H S, Wang L S, Liu D D, Jiang C H, Yang Y P, Fan R W, Chen D Y 2013 Infrar. Laser Eng. 42 418Google Scholar

    [17]

    冷健, 季一勤, 刘华松, 庄克文, 刘丹丹 2018 红外与激光工程 47 196

    Leng J, Ji Y Q, Liu H S, Zhuang K W, Liu D D 2018 Infrar. Laser Eng. 47 196

    [18]

    Shen Y M, Han Z X, Shao J D, Shao S Y, He H B 2008 Chin. Opt. Lett. 6 225Google Scholar

    [19]

    Stoney G G 1909 Proc. R. Soc. London Ser. A 82 172Google Scholar

    [20]

    黄才华, 薛亦渝, 彭桦, 夏志林, 郭培涛 2009 中国激光 36 364

    Huang C H, Xue Y Y, Peng H, Xia Z L, Guo P T 2009 Chin. J. Lasers 36 364

    [21]

    申雁鸣2008 博士学位论文(上海: 中国科学院上海光学精密机械研究所)

    Shen Y M 2008 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • 图 1  Ta2O5/SiO2多层反射膜在不同温度下退火后的XRD谱图

    Fig. 1.  XRD patterns of Ta2O5/SiO2 multilayer reflective coatings annealed at different temperatures.

    图 2  经不同温度退火后Ta2O5/SiO2多层反射膜表面形貌AFM测试图 (a) 沉积态; (b) 200 ℃; (c) 300 ℃; (d) 400 ℃; (e) 500 ℃; (f) 600 ℃

    Fig. 2.  AFM images of Ta2O5/SiO2 multilayer reflective coatings annealed at different temperatures: (a) As-deposited; (b) 200 ℃; (c) 300 ℃; (d) 400 ℃; (e) 500 ℃; (f) 600 ℃.

    图 3  经不同温度退火后Ta2O5/SiO2多层反射膜表面RMS

    Fig. 3.  Surface RMS of Ta2O5/SiO2 multilayer reflective coatings annealed at different temperatures.

    图 4  经不同温度退火后Ta2O5/SiO2多层反射膜反射率光谱曲线

    Fig. 4.  Reflectance spectra of Ta2O5/SiO2 multilayer reflective coatings annealed at different temperatures.

    图 5  经不同温度退火后介质膜反射镜面形图 (a)沉积态; (b) 200 ℃; (c) 300 ℃; (d) 400 ℃; (e) 500 ℃; (f) 600 ℃

    Fig. 5.  Surface figures of dielectric mirrors annealed at different temperatures: (a) As-deposited; (b) 200 ℃; (c) 300 ℃; (d) 400 ℃; (e) 500 ℃; (f) 600 ℃.

    图 6  经500—600 ℃退火后介质膜反射镜面形图 (a) 525 ℃; (b) 550 ℃; (c) 575 ℃

    Fig. 6.  Surface figures of dielectric mirrors annealed at the temperature range from 500 to 600 ℃: (a) 525 ℃; (b) 550 ℃; (c) 575 ℃.

    表 1  经不同温度退火后Ta2O5/SiO2多层反射膜基片变形和残余应力值

    Table 1.  Substrate deflection and residual stress of annealed Ta2O5/SiO2 multilayer reflective coatings.

    Annealing temperature/℃Substrate deflection/nmResidual stress/MPa
    Before coatingAfter coatingAfter annealingAfter coatingAfter annealing
    As-deposited31.6–282.8–282.8–90.9–90.9
    20029.5–281.6–375.3–89.9–117.0
    30031.4–278.4–363.9–89.5–114.3
    40030.2–282.8–320.2–90.5–101.3
    50031.8–284.1–67.1–92.3–28.6
    60030.5–280.3213.3–89.852.9
    下载: 导出CSV

    表 2  Ta2O5/SiO2多层反射膜在500—600 ℃退火后基片变形和残余应力值

    Table 2.  Substrate deflection and residual stress of Ta2O5/SiO2 multilayer reflective coatings annealed at the temperature range from 500 to 600 ℃

    Annealing temperature/℃Substrate deflection/nmResidual stress/MPa
    Before coatingAfter coatingAfter annealingAfter coatingAfter annealing
    52531.2–279.816.4–89.9–4.3
    55029.6–283.660.1–90.58.8
    57530.8–281.5112.6–90.323.6
    下载: 导出CSV
  • [1]

    唐新明, 谢俊峰, 付兴科, 莫凡, 李少宁, 窦显辉 2017 测绘学报 46 714Google Scholar

    Tang X M, Xie J F, Fu X K, Mo F, Li S N, Dou X H 2017 Acta Geod. Cartogr. Sin. 46 714Google Scholar

    [2]

    刘斌, 张军, 鲁敏, 滕书华, 马燕新, 张文广 2015 激光与红外 54 5104

    Liu B, Zhang J, Lu M, Teng S H, Ma Y X, Zhang W G 2015 Laser Infr. 54 5104

    [3]

    刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214Google Scholar

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214Google Scholar

    [4]

    Schiltz D, Patel D, Baumgarten C, Reagan B A, Rocca J J, Menoni C S 2017 Appl. Opt. 5 6

    [5]

    Kumar S, Shankar A, Kishore N, Mukherjee C, Kamparath R, Thakur S 2019 Optik 176 438Google Scholar

    [6]

    Qiao Z, Pu Y T, Liu H, Luo K, Wang G, Liu Z C, Ma P 2015 Thin Solid Films 592 221Google Scholar

    [7]

    Ailloud Q, Zerrad M, Amra C 2018 Opt. Express 26 13264Google Scholar

    [8]

    马跃, 阳凡林, 易洪, 李松 2015 红外与激光工程 44 2401Google Scholar

    Ma Y, Yang F L, Yi H, Li S 2015 Infrar. Laser Eng. 44 2401Google Scholar

    [9]

    庞志海, 樊学武, 陈钦芳, 马臻, 邹刚毅 2013 光学学报 33 186

    Pang Z H, Fan X W, Chen Q F, Ma Z, Zou G Y 2013 Acta Opt. Sin. 33 186

    [10]

    Wang L S, Liu H S, Jiang Y G, Yang X, Liu D D, Ji Y Q, Zhang F, Chen D Y 2017 Optik 142 33Google Scholar

    [11]

    Sertel T, Sonmez N A, Cetin S S, Ozcelik S 2019 Ceram. Int. 45 11Google Scholar

    [12]

    Li S D, Liu H S, Jiang Y G, He J H, Wang L S, Ji Y Q 2019 Optik 181 695Google Scholar

    [13]

    Bischoff M, Nowitzki T, Voß O, Wilbrandt S, Stenzel O 2014 Appl. Opt. 5 3

    [14]

    Jena S, Tokas R B, Rao K D, Thakur S, Sahoo N K 2016 Appl. Opt. 55 6108Google Scholar

    [15]

    Çetinörgü-Goldenberg E, Klemberg-Sapieha J E, Martinu L 2012 Appl. Opt. 51 6498

    [16]

    季一勤, 姜玉刚, 刘华松, 王利栓, 刘丹丹, 姜承慧, 羊亚平, 樊荣伟, 陈德应 2013 红外与激光工程 42 418Google Scholar

    Ji Y Q, Jiang Y G, Liu H S, Wang L S, Liu D D, Jiang C H, Yang Y P, Fan R W, Chen D Y 2013 Infrar. Laser Eng. 42 418Google Scholar

    [17]

    冷健, 季一勤, 刘华松, 庄克文, 刘丹丹 2018 红外与激光工程 47 196

    Leng J, Ji Y Q, Liu H S, Zhuang K W, Liu D D 2018 Infrar. Laser Eng. 47 196

    [18]

    Shen Y M, Han Z X, Shao J D, Shao S Y, He H B 2008 Chin. Opt. Lett. 6 225Google Scholar

    [19]

    Stoney G G 1909 Proc. R. Soc. London Ser. A 82 172Google Scholar

    [20]

    黄才华, 薛亦渝, 彭桦, 夏志林, 郭培涛 2009 中国激光 36 364

    Huang C H, Xue Y Y, Peng H, Xia Z L, Guo P T 2009 Chin. J. Lasers 36 364

    [21]

    申雁鸣2008 博士学位论文(上海: 中国科学院上海光学精密机械研究所)

    Shen Y M 2008 Ph. D. Dissertation (Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

  • [1] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能. 物理学报, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [2] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙. 电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性. 物理学报, 2015, 64(13): 136103. doi: 10.7498/aps.64.136103
    [3] 李旸晖, 郝翔, 史召邑, 帅少杰, 王乐. 光学薄膜诱导偏振像差对大数值孔径光学系统聚焦特性的影响. 物理学报, 2015, 64(15): 154214. doi: 10.7498/aps.64.154214
    [4] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [5] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [6] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [7] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [8] 胡天乐, 陆妩, 席善斌, 郭旗, 何承发, 吴雪, 王信. PNP输入双极运算放大器在不同辐射环境下的辐射效应和退火特性. 物理学报, 2013, 62(7): 076105. doi: 10.7498/aps.62.076105
    [9] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [10] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [11] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [12] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究. 物理学报, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [13] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] 侯海虹, 孙喜莲, 田光磊, 吴师岗, 马小凤, 邵建达, 范正修. 利用总积分散射仪对光学薄膜表面散射特性的研究. 物理学报, 2009, 58(9): 6425-6429. doi: 10.7498/aps.58.6425
    [15] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [16] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [17] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [18] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  12429
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回