搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭曲二维结构钝化的钙钛矿太阳能电池

付鹏飞 虞丹妮 彭子健 龚晋慷 宁志军

引用本文:
Citation:

扭曲二维结构钝化的钙钛矿太阳能电池

付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军

Perovskite solar cells passivated by distorted two-dimensional structure

Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun
PDF
HTML
导出引用
  • 有机-无机钙钛矿材料是一种新兴的可溶液加工的薄膜太阳能电池材料. 通过向钙钛矿中引入低维结构能够显著提高其材料稳定性和器件稳定性. 首先, 探究了一种双阳离子2, 2’-联咪唑(BIM)形成的铅基二维钙钛矿; 然后, 通过单晶衍射手段发现了一种新型的扭曲二维结构; 最后, 通过一步旋涂方法将这种扭曲二维结构引入到钙钛矿薄膜中, 所得到的太阳能电池器件效率达14%, 并且具有较好的稳定性. 本文提供了一种新的钙钛矿薄膜的钝化体系, 并且直接运用于太阳能电池器件的制备, 为提高钙钛矿太阳能电池的稳定性提供了新的发展思路.
    Hybrid perovskites are a series of solution-processable materials for photovoltaic devices. To achieve better performance and stability, interface passivation is an effective method. So far, the most commonly used passivators are organic amines, which can tailor perovskite into a lower-dimensional structure (Ruddlesden-Popper perovskite). Here, we select a biimizole (BIM) molecule as a new passivator for perovskite. The BIM based single layer perovskite has a more rigid structure. And multi-layered structure cannot be formed due to large lattice mismatching and structural rigidity. By inducing the excess MAI (methanaminium iodide) into the lattice, the layered structure is maintained, and half of the BIM molecules are replaced by MA (methylamine). The mixed layered structure is distorted, because of the difference in size between two kinds of cations. We then investigate passivation effect of BIM on perovskite solar cells. By carefully controlling the feed ratio in precursor solutions, we fabricate solar cells with different passivation structures. We find that the introduction of BIM can cause Voc to increase generally, indicating that MAPbI3 is well passivated. The peak at 7.5° and 15° in X-ray diffraction pattern are corresponding to a two-dimensional (2D) phase with a shorter layer distance. There are no peaks at lower degrees, so that no multi-layered structure is formed in the film either. We suppose that a dual-phase 2D-3D (where 3D represents three-dimensional) structure is formed in the perovskite film. To explain the passivation effect of the two 2D structures, we investigate their lattice matching towards MAPbI3. The distorted 2D structure is well matched with (110) face of o-MAPbI3, and the mismatching rate is lower 1% in the two directions. On the other hand, the BIM based 2D structure cannot well match with (–110) face of o-MAPbI3, nor with (001) face of c-MAPbI3. We also consider that the less rigidity of distorted structure contributes to better passivation. As a result, we achieve a BIM passivated perovskite solar cell with a power conversion efficiency up to 14%. This work paves a new way to the interface engineering of perovskite solar cells.
      通信作者: 宁志军, ningzhj@shanghaitech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21571129, 51572128)资助的课题.
      Corresponding author: Ning Zhi-Jun, ningzhj@shanghaitech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21571129, 51572128).
    [1]

    Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar

    [2]

    Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar

    [3]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar

    [4]

    Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar

    [5]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [6]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar

    [7]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar

    [8]

    Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar

    [9]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [10]

    Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar

    [11]

    Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831

    [12]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [13]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051

    [14]

    Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar

    [15]

    Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar

    [16]

    Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173

    [17]

    Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar

    [18]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar

    [19]

    Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar

    [20]

    Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar

    [21]

    Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar

    [22]

    Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185

    [23]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [24]

    Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar

    [25]

    Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar

    [26]

    Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar

    [27]

    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar

    [28]

    Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150

    [29]

    Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588

  • 图 1  二维钙钛矿的结构 (a) BA2PbI4; (b) BA2MAPb2I7; (c) BIMPbI4; (d) MA2BIMPb2I8

    Fig. 1.  Structure of two-dimensional perovskite: (a) BA2PbI4; (b) BA2MAPb2I7; (c) BIMPbI4; (d) MA2BIMPb2I8.

    图 2  钙钛矿薄膜表征 (a)二维-三维(2D-3D)混合薄膜X射线衍射图; (b)薄膜吸收光谱及荧光光谱

    Fig. 2.  Characterization of perovskite films: (a) X-ray diffraction of 2D-3D perovskite film; (b) Abs and PL of perovskite films.

    图 A1  钙钛矿薄膜X射线衍射小角度放大图

    Fig. A1.  Magnification of low angle X-ray diffraction patterns of perovskite films

    图 3  不同组成对应器件性能比较 (a) 开路电压; (b) 短路电流; (c) 光电转换效率; (d) 电流-电压曲线

    Fig. 3.  Device performance with different composition: (a) Open-circuit voltage; (b) short-circuit current; (c) power conversion efficiency; (d) plot of J-V curves.

    图 4  晶界的钝化模型 (a) MA2BIMPb2I8 (002)面与MAPbI3 (110)面晶格匹配; (b) BIMPbI4 (002)面与MAPbI3 (–110)面晶格匹配; (c) 晶面透视图及两个方向上的晶格参数; (d)钙钛矿钝化模型

    Fig. 4.  Passivation model of interfaces: (a) Lattice matching of MA2BIMPb2I8 (002) and MAPbI3 (110); (b) lattice matching of BIMPbI4 (002) and MAPbI3 (–110); (c) perspective of layered crystal and lattice parameter of two directions; (d) passivation of perovskite.

    图 A2  最佳性能电池器件的回滞曲线

    Fig. A2.  Hysteresis curves of the best device

    表 A2  器件制备前驱液配方

    Table A2.  Composition of perovskite precursor solutions

    组成投料摩尔比(BIMI2:MAI:PbI2)
    BIM0.2MA0.8PbI3.2 (BIMPbI4:MAPbI3 = 0.2 : 0.8)0.2 : 0.8 : 1
    BIM0.1MA0.9PbI3.1 (BIMPbI4:MAPbI3 = 0.1 : 0.9)0.1 : 0.9 : 1
    BIM0.2MAPbI3.4 (MA2BIMPb2I8:MAPbI3 = 0.1 : 0.8)0.2 : 1 : 1
    BIM0.1MAPbI3.2 (MA2BIMPb2I8:MAPbI3 = 0.05 : 0.9)0.1 : 1 : 1
    下载: 导出CSV

    表 A3  器件基本参数

    Table A3.  Parameters of solar cell devices

    组成开路电压Voc/V短路电流Jsc/ mA·cm–2填充因子FF/%转换效率η/%
    BIM0.2MA0.8PbI3.21.088.9045.84.41
    BIM0.1MA0.9PbI3.11.0115.9067.610.89
    BIM0.2MAPbI3.41.0714.7266.110.46
    BIM0.1MAPbI3.21.0817.2575.1214.06
    下载: 导出CSV

    表 A4  钝化模型参数总结

    Table A4.  Summary of parameters in the passivation model

    二维晶面晶格间距/Å (横向, 纵向)钝化晶面晶格间距/Å (横向, 纵向)失配率 (横向, 纵向)
    MA2BIMPb2I8 (002)6.25, 6.38正交MAPbI3 (110)6.26, 6.320.16%, 0.95%
    BIMPbI4 (002)6.45, 6.45正交MAPbI3 (–110)6.32, 6.262.06%, 3.04%
    立方MAPbI3 (001)6.31, 6.312.22%, 2.22%
    下载: 导出CSV

    表 A1  MA2BIMPb2I8 单晶数据报告

    Table A1.  Crystallographic parameter of MA2BIMPb2I8

    参数取值
    CompoundMA2BIMPb2I8
    Formula weight1628.6
    Temperature/K249.99
    Crystal systemorthorhombic
    Space groupPmna
    a12.5016(7)
    b6.3876(4)
    c18.8380(12)
    α/(°)90.00
    β/(°)90.00
    γ/(°)90.00
    Volume/Å31504.31(16)
    Z4
    ρcalc/g·cm–35.581
    μ/mm–146.218
    F(000)2086.0
    RadiationMo Kα (λ = 0.71073)
    2θ range for data collection/(°)6.38 to 52.72
    Index ranges–15 ≤ h ≤ 15, –7 ≤ k ≤ 7, –23 ≤ l ≤ 23
    Reflections collected12046
    Independent reflections1608 [Rint = 0.0780, Rsigma = 0.0442]
    Data/restraints/parameters1608/0/64
    Goodness-of-fit on F21.039
    Final R indexes [I ≥ 2σ(I)]R1 = 0.0485, wR2 = 0.1043
    Final R indexes [all data]R1 = 0.0767, wR2 = 0.1171
    Largest diff. peak/hole/e·Å–33.45/–2.09
    下载: 导出CSV

    表 A5  近期二维钙钛矿太阳能电池进展

    Table A5.  Recent advances of 2D perovskite solar cells

    组成类型/层数Voc/VJsc /mA·cm-2FF/%η/%
    (PEA)2(MA)3Pb4I13RP (4)1.1614.77712.1[22]
    (BA)2MA3Pb4I13RP (4)0.9918.4375.213.8[16]
    (BEA)2MA3Pb4I13RP (4)1.0120.6378.016.1[16]
    (BYA)2MA3Pb4I13RP (4)1.0119.5376.415.1[16]
    (PEA)2MA3Pb4I13RP (4)1.1418.786213.41[23]
    BA2MA4Pb5I16RP (5)0.9911.6772.18.32[24]
    PA2MA4Pb5I16RP (5)1.1318.894910.41[14]
    (BA)2(MA)3Pb4I13RP (4)1.0616.670.912.5[25]
    3AMP(MA)3Pb4I13DJ (4)1.0610.1767.67.33[26]
    3AMP(MA0.75FA0.25)3Pb4I13DJ (4)1.0913.6981.0412.04[27]
    (PDMA)FA2Pb3I10DJ (3)0.8411.4872.17.11[28]
    BzDA(Cs0.05MA0.15FA0.8)9Pb10(I0.93Br0.07)31DJ (10)1.0221.57115.6[29]
    BIM0.2MAPbI3.441.0714.7266.110.46
    BIM0.1MAPbI3.291.0817.2575.114.06
    下载: 导出CSV
  • [1]

    Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar

    [2]

    Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar

    [3]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar

    [4]

    Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar

    [5]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [6]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar

    [7]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar

    [8]

    Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar

    [9]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [10]

    Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar

    [11]

    Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831

    [12]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [13]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051

    [14]

    Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar

    [15]

    Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar

    [16]

    Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173

    [17]

    Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar

    [18]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar

    [19]

    Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar

    [20]

    Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar

    [21]

    Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar

    [22]

    Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185

    [23]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [24]

    Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar

    [25]

    Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar

    [26]

    Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar

    [27]

    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar

    [28]

    Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150

    [29]

    Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588

  • [1] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层. 物理学报, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [3] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [7] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [10] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [11] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [13] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [15] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [18] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [19] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [20] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
计量
  • 文章访问数:  12894
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-06
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回