搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暗声学超材料型充液管道的低频消声特性

沈惠杰 郁殿龙 汤智胤 苏永生 李雁飞 刘江伟

引用本文:
Citation:

暗声学超材料型充液管道的低频消声特性

沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟

Characteristics of low-frequency noise elimination in a fluid-filled pipe of dark acoustic metamaterial type

Shen Hui-Jie, Yu Dian-Long, Tang Zhi-Yin, Su Yong-Sheng, Li Yan-Fei, Liu Jiang-Wei
PDF
HTML
导出引用
  • 充液管道低频声的有效吸收和消减一直是一个颇具挑战性的难题. 受声学超材料理论启发, 本文设计了一种沿管道轴向方向等距布置小体积声学短管的充液周期管道系统. 该管道系统可以诱发声波传播超宽低频带隙的产生, 使得声波在带隙频率范围内传播将被显著衰减, 乃至无法透射, 近乎被完全吸收, 称为暗声学超材料型充液管道. 进一步, 揭示了暗声学超材料型充液管道中声传播带隙的产生机理、参数影响规律, 研究了该波导管对低频噪声的降噪特性, 初步探讨了工程实际可实现的暗声学超材料型充液管道的结构实现形式. 研究成果有望为管道低频噪声控制提供一条新的技术途径.
    The suppression and absorption of low-frequency noise for a fluid-filled pipe system has become a challenging task. Inspired by the properties of acoustic metamaterials, we construct a fluid-filled periodic pipe system, consisting of small-size short acoustic pipes mounted on a fluid-filled main pipe system equidistantly along the axial direction of main pipe. The short acoustic pipe is filled with fluid and gas, and the fluid section is connected to the main pipe that is filled with the same liquid. In such a periodic pipe system, an ultra-low frequency and ultra-broad band gap of acoustic waves can be generated, making the acoustic waves transmitting in the pipe system effectively attenuated within the band gap frequency range. Since the attenuation effects of the band gap on the low-frequency sound are so strong (the acoustic waves almost cannot be transmitted through the pipe system) that the periodic pipe system is referred to as a dark acoustic metamaterial (DAM)-type fluid-filled pipe system. The formation mechanism of the first band gap can be ascribed to the co-resonance of the short acoustic pipe array in the piping system, and this band gap is categorized as resonant-type BG (RBG). The contribution of short acoustic pipes is to introduce a low-frequency and large impedances spatially into the system, whereupon the transmitting waves will experience a tempestuously resonance in the pipe. As a result, the transmission of acoustic waves within the RBG is stopped. The second band gap in a higher frequency range is classified as Bragg-type band gap (BBG), since it is induced by the effects of interference between the incident, the reflected and the transmitted acoustic waves existing in the periodic units. The interference effect on the suppression of wave transmission is strengthened by the ceaselessly repeating uniform cells. The lattice constant change can bring in a modulation effects on both the BBG and the upper band edge of RBG. Increasing the volume of gas chamber in the short acoustic pipe will result in a shift of lower band edge of RBG towards the low-frequency range but has no action on the upper band edge; similarly, the augment of the liquid volume of the short acoustic pipe also lowers the band edges of RBG, however, bandwidth of the RBG will be reduced. A membrane may be used to physically separate the gas from the fluid in the short acoustic pipe, rendering the design more feasible to be realized in practical engineering. The installation of membrane will not change the low-frequency band gap properties of the DAM pipe. The obtained results show that the proposed design in this study may provide a new way to solve the defiant problem of noise control in the low frequency range for fluid piping systems.
      通信作者: 沈惠杰, shj588@163.com
    • 基金项目: 国家自然科学基金(批准号:51705529,11872371)资助的课题.
      Corresponding author: Shen Hui-Jie, shj588@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51705529, 11872371).
    [1]

    吴九汇, 马富银, 张思文, 沈礼 2016 机械工程学报 52 68

    Wu J H, Ma F Y, Zhang S W, Shen L 2016 Chin. J. Mech. Eng. 52 68

    [2]

    张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar

    Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar

    [3]

    曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20

    Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20

    [4]

    Liu B, Liu J, Wei W, Shen H, Wei Z 2018 AIP Adv. 8 115322Google Scholar

    [5]

    Chiang Y K, Choy Y S, Tang S K 2017 J. Acoust. Soc. Am. 141 1999Google Scholar

    [6]

    Jiang C Y, Huang L X 2018 J. Sound Vib. 418 79Google Scholar

    [7]

    Kopiev V F, Mironov M A, Yakovets M A 2015 Acoust. Phys. 61 49

    [8]

    Cambonie T, Mbailassem F, Gourdon E 2018 Appl. Acoust. 131 87Google Scholar

    [9]

    Zhang T, Zhang Y O, Ouyang H 2015 Int. J. Press. Ves. Pip. 125 66Google Scholar

    [10]

    Bravo T, Maury C, Pinhède C 2017 J. Sound Vib. 395 201Google Scholar

    [11]

    Koh J, Lyu S, Lee T 2015 Proceedings of the 22ND International Congress on Sound and Vibration Florence, Italy, July 12–16, 2015 p12

    [12]

    Zhu Y W, Zhu F W, Zhang Y S, Wei Q G 2017 Appl. Acoust. 116 9Google Scholar

    [13]

    Xiang L, Zuo S, Wu X, Liu J 2017 Appl. Acoust. 122 35Google Scholar

    [14]

    Williams P, Kirby R, Hill J, Åbom M, Malecki C 2018 Appl. Acoust. 131 61Google Scholar

    [15]

    Zhao X, Cai L, Yu D, Lu Z, Wen J 2017 AIP Adv. 7 065211Google Scholar

    [16]

    Li D, Kang Y, Ding X, Wang X, Liu W 2017 J. Mech. Sci. Technol. 31 1203Google Scholar

    [17]

    Chaitanya P, Munjal M L 2011 Appl. Acoust. 72 65Google Scholar

    [18]

    Mimani A, Munjal M L 2012 Wave Motion 49 271Google Scholar

    [19]

    Liu J, Yu D, Wen J, Zhang Z 2018 J. Theor. Comp. Acoust. 26 1850026

    [20]

    Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 064301Google Scholar

    [21]

    程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301Google Scholar

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301Google Scholar

    [22]

    高汉峰, 张欣, 吴福根, 姚源卫 2016 物理学报 65 044301Google Scholar

    Gao H F, Zhang X, Wu F G, Yao Y W 2016 Acta Phys. Sin. 65 044301Google Scholar

    [23]

    梁彬, 袁樱, 程建春 2015 物理学报 64 094305Google Scholar

    Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305Google Scholar

    [24]

    Lu M H, Yan L F, Chen F 2009 Mater. Today 12 34

    [25]

    Tang Y, Xin F, Huang L, Lu T 2017 EPL 118 44002Google Scholar

    [26]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [27]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Comm. 3 756Google Scholar

    [28]

    刘侍刚 2001 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Liu S G 2001 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)

  • 图 1  暗声学超材料管结构示意图

    Fig. 1.  Sketch map of the 1D dark metamaterial pipe.

    图 2  暗声学超材料管的声波能带结构图和声传递损失

    Fig. 2.  Acoustic bang structure and sound transmission loss of the dark acoustic metamaterial-type pipe.

    图 3  暗声学超材料管的声波透射系数与吸声系数

    Fig. 3.  The transmission and absorption coefficients of acoustic waves in the dark acoustic metamaterial-type pipe.

    图 4  带隙内若干频率处的管内声压分布图和等值面 (a) 34.5 Hz; (b) 95.5 Hz;(c) 305.5 Hz

    Fig. 4.  Acoustic pressure distributions and isosurfaces inside the dark metamaterial pipe, for several frequencies which located within the band gaps: (a) 34.5 Hz; (b) 95.5 Hz; (c) 305.5 Hz.

    图 5  充液声学短管周期管道的声传递损失

    Fig. 5.  The sound transmission loss for a fluid-filled pipe system with short acoustic pipes attached periodically.

    图 6  气液混合腔声学短管的归一化阻抗

    Fig. 6.  The normalized acoustic impedance for the short pipe equipped with a gas-fluid hybrid chamber.

    图 7  单个周期元胞在若干频率点处的声学模态

    Fig. 7.  Acoustic modes of the periodic pipe cell at several frequency points.

    图 8  不同晶格常数下暗声学超材料管的声传递损失

    Fig. 8.  The sound transmission losses of the dark metamaterial pipe, for different lattice constants.

    图 9  共振带隙上带边和Bragg带隙下带边随晶格常数的变化

    Fig. 9.  The curves for the upper edge of resonance gap and the lower edge of Bragg gap, as functions of the increased lattice constant.

    图 10  不同充气腔长度下暗声学超材料管的声传递损失

    Fig. 10.  The sound transmission losses of the dark metamaterial pipe, for different lengths of gas-filled section of the attached short pipe.

    图 11  不同充液腔长度下暗声学超材料管的声传递损失

    Fig. 11.  The sound transmission losses of the dark metamaterial pipe, for different lengths of the fluid-filled section of the attached short pipe.

    图 12  声学短管液腔和气腔加橡胶隔膜条件下暗声学超材料管的声传递损失

    Fig. 12.  The sound transmission losses of the dark metamaterial pipe under the condition when a rubber membrane is installed to separate the liquid and gap inside the attached short pipe.

  • [1]

    吴九汇, 马富银, 张思文, 沈礼 2016 机械工程学报 52 68

    Wu J H, Ma F Y, Zhang S W, Shen L 2016 Chin. J. Mech. Eng. 52 68

    [2]

    张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar

    Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar

    [3]

    曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20

    Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20

    [4]

    Liu B, Liu J, Wei W, Shen H, Wei Z 2018 AIP Adv. 8 115322Google Scholar

    [5]

    Chiang Y K, Choy Y S, Tang S K 2017 J. Acoust. Soc. Am. 141 1999Google Scholar

    [6]

    Jiang C Y, Huang L X 2018 J. Sound Vib. 418 79Google Scholar

    [7]

    Kopiev V F, Mironov M A, Yakovets M A 2015 Acoust. Phys. 61 49

    [8]

    Cambonie T, Mbailassem F, Gourdon E 2018 Appl. Acoust. 131 87Google Scholar

    [9]

    Zhang T, Zhang Y O, Ouyang H 2015 Int. J. Press. Ves. Pip. 125 66Google Scholar

    [10]

    Bravo T, Maury C, Pinhède C 2017 J. Sound Vib. 395 201Google Scholar

    [11]

    Koh J, Lyu S, Lee T 2015 Proceedings of the 22ND International Congress on Sound and Vibration Florence, Italy, July 12–16, 2015 p12

    [12]

    Zhu Y W, Zhu F W, Zhang Y S, Wei Q G 2017 Appl. Acoust. 116 9Google Scholar

    [13]

    Xiang L, Zuo S, Wu X, Liu J 2017 Appl. Acoust. 122 35Google Scholar

    [14]

    Williams P, Kirby R, Hill J, Åbom M, Malecki C 2018 Appl. Acoust. 131 61Google Scholar

    [15]

    Zhao X, Cai L, Yu D, Lu Z, Wen J 2017 AIP Adv. 7 065211Google Scholar

    [16]

    Li D, Kang Y, Ding X, Wang X, Liu W 2017 J. Mech. Sci. Technol. 31 1203Google Scholar

    [17]

    Chaitanya P, Munjal M L 2011 Appl. Acoust. 72 65Google Scholar

    [18]

    Mimani A, Munjal M L 2012 Wave Motion 49 271Google Scholar

    [19]

    Liu J, Yu D, Wen J, Zhang Z 2018 J. Theor. Comp. Acoust. 26 1850026

    [20]

    Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 064301Google Scholar

    [21]

    程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301Google Scholar

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301Google Scholar

    [22]

    高汉峰, 张欣, 吴福根, 姚源卫 2016 物理学报 65 044301Google Scholar

    Gao H F, Zhang X, Wu F G, Yao Y W 2016 Acta Phys. Sin. 65 044301Google Scholar

    [23]

    梁彬, 袁樱, 程建春 2015 物理学报 64 094305Google Scholar

    Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305Google Scholar

    [24]

    Lu M H, Yan L F, Chen F 2009 Mater. Today 12 34

    [25]

    Tang Y, Xin F, Huang L, Lu T 2017 EPL 118 44002Google Scholar

    [26]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [27]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Comm. 3 756Google Scholar

    [28]

    刘侍刚 2001 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Liu S G 2001 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)

  • [1] 王娟芬, 韦鑫, 刘帅, 杨玲珍, 薛萍萍, 樊林林. 分数阶衍射蜂窝晶格中带隙涡旋孤子的传输与控制. 物理学报, 2024, 73(9): 094205. doi: 10.7498/aps.73.20232005
    [2] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [3] 刘权兴, 何哲星, 李永强, 温激鸿, 肖勇. 超材料梁的双阶耦合带隙调控设计与宽带减振特性. 物理学报, 2024, 73(15): 154601. doi: 10.7498/aps.73.20240689
    [4] 孙涛, 袁健美. 基于迁移学习的钙钛矿材料带隙预测. 物理学报, 2023, 72(21): 218901. doi: 10.7498/aps.72.20231027
    [5] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [6] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [7] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙. 物理学报, 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [9] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [10] 沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. 负带隙HgCdTe体材料的磁输运特性研究. 物理学报, 2017, 66(24): 247301. doi: 10.7498/aps.66.247301
    [11] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [12] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [13] 于淼, 张 岩, 房博, 高俊艳, 高金伟, 吴金辉. 电磁感应双光子带隙的产生和控制. 物理学报, 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [14] 付志强, 林书玉, 陈时, 鲜晓军, 张小丽, 王勇. 一维指数形变截面有限周期声子晶体的研究. 物理学报, 2012, 61(19): 194301. doi: 10.7498/aps.61.194301
    [15] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [16] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [17] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [18] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用. 物理学报, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [19] 成步文, 姚 飞, 薛春来, 张建国, 李传波, 毛容伟, 左玉华, 罗丽萍, 王启明. 带隙法测定SiGe/Si材料的应变状态. 物理学报, 2005, 54(9): 4350-4353. doi: 10.7498/aps.54.4350
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  8100
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-06
  • 修回日期:  2019-04-18
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回